Skip to main content

An Application of the Grünwald-Letinkov Fractional Derivative to a Study of Drug Diffusion in Pharmacokinetic Compartmental Models

  • Conference paper
  • First Online:
Mathematical Models and Computer Simulations for Biomedical Applications (MCHBS 2021)

Part of the book series: SEMA SIMAI Springer Series ((SEMA SIMAI,volume 33))

  • 134 Accesses

Abstract

In this study, we present the application of fractional calculus (FC) in biomedicine. We present three different integer order pharmacokinetics models which are widely used in cancer therapy with two and three compartments and we solve them numerically and analytically to demonstrate the absorption, distribution, metabolism, and excretion (ADME) of drug or nanoparticles (NPs) in different tissues. Since tumor cells interactions are systems with memory, the fractional order framework is a better approach to model the cancer phenomena rather than ordinary and delay differential equations. Therefore, the nonstandard finite difference analysis or NSFD method following the Grünwald-Letinkov discretization may be applied to discretize the model and obtain the fractional order form to describe the fractal processes of drug movement in body. It will be of great significance to implement a simple and efficient numerical method to solve these fractional order models. Therefore, numerical methods using finite difference scheme has been carried out to derive the numerical solution of fractional order two and tri-compartmental pharmacokinetics models for oral drug administration. This study shows that the fractional order modeling extends the capabilities of integer order model into the generalized domain of fractional calculus. In addition, the fractional order modeling gives more power to control the dynamical behaviors of (ADME) process in different tissues because the order of fractional derivative may be used as a new control parameter to extract the variety of governing classes on the non local behaviors of a model, however, the integer order operator only deals with the local and integer order domain. As a matter of fact, NSFD may be used as an effective and very easy method to implement for this type application, and it provides a convenient framework for solving the proposed fractional order models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lin, Z., Gehring, R., Mochel, J.P., Lave, T., Riviere, J.E.: Mathematical modeling and simulation in animal health–Part II: principles, methods, applications, and value of physiologically based pharmacokinetic modeling in veterinary medicine and food safety assessment. J. Vet. Pharmacol. Therap. 39, 421–438 (2016)

    Article  Google Scholar 

  2. Brown, R.P., Delp, M.D., Lindstedt, S.L., Rhomberg, L.R., Beliles, R.P.: Physiological parameter values for physiologically based pharmacokinetic models. Toxicol. Ind. Health 13, 407–484 (1997)

    Article  Google Scholar 

  3. Azizi, T., Mugabi, R.: Global sensitivity analysis in physiological systems. Appl. Math. 11, 119–136 (2020)

    Article  Google Scholar 

  4. Azizi, T.: Mathematical Modeling with Applications in Biological Systems, Physiology, and Neuroscience. Kansas State University (2021)

    Google Scholar 

  5. Pitchaimani, A., Nguyen, T.D.T., Marasini, R., Eliyapura, A., Azizi, T., Jaberi-Douraki, M. and Aryal, S.: Biomimetic natural killer membrane camouflaged polymeric nanoparticle for targeted bioimaging. Adv. Funct. Mater. 29, 1806817 (2019)

    Article  Google Scholar 

  6. Riviere, J.E., Jaberi-Douraki, M., Lillich, J., Azizi, T., Joo, H., Choi, K., Thakkar, R. and Monteiro-Riviere, N.A.: Modeling gold nanoparticle biodistribution after arterial infusion into perfused tissue: effects of surface coating, size and protein corona. Nanotoxicology 12, 1093–1112, (2018)

    Article  Google Scholar 

  7. Marino, S., Hogue, I.B., Ray, C.J. and Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254, 178–196 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Blower, S.M., Dowlatabadi, H.: Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev./Revue Internationale de Statistique, JSTOR 62(2), 229–243 (1994)

    Google Scholar 

  9. Zi, Z.: Sensitivity analysis approaches applied to systems biology models. IET Syst. Biol. 5, 336–346 (2011)

    Article  Google Scholar 

  10. Dalberg, J., Gimenez, H., Keeley, A., Azizi, T., Xi, X. and Jaberi-Douraki, M.: Local and global dynamics of discrete type 1 diabetes model (2019)

    Google Scholar 

  11. Zhao, P., Zhang, L., Grillo, J.A., Liu, Q., Bullock, J.M., Moon, Y.J., Song, P., Brar, S.S., Madabushi, R., Wu, T.C., et al.: Applications of physiologically based pharmacokinetic (PBPK) modeling and simulation during regulatory review. Clin. Pharmacol. Therap. 89, 259–267 (2011)

    Article  Google Scholar 

  12. Barrett, J.S., Della Casa Alberighi, O., Läer, S., Meibohm, B.: Physiologically based pharmacokinetic (PBPK) modeling in children. Clin. Pharmacol. Therap. 92, 40–49 (2012)

    Google Scholar 

  13. Wagner, C., Zhao, P., Pan, Y., Hsu, V., Grillo, J., Huang, S.M., Sinha, V.: Application of physiologically based pharmacokinetic (PBPK) modeling to support dose selection: report of an FDA public workshop on PBPK. CPT: Pharmacom. Syst. Pharmacol. 4, 226–230 (2015)

    Google Scholar 

  14. Hilfer, R., et al.: Applications of Fractional Calculus in Physics. World Scientific Singapore, pp. 497–528 (2000)

    Google Scholar 

  15. Rihan, F.A., Baleanu, D., Lakshmanan, S. and Rakkiyappan, R.: On fractional SIRC model with salmonella bacterial infection. In: Abstract and Applied Analysis. Hindawi (2014)

    Google Scholar 

  16. Rihan, F.A., Lakshmanan, S., Hashish, A.H., Rakkiyappan, R., Ahmed, E.: Fractional-order delayed predator–prey systems with Holling type-II functional response. Nonlinear Dynam. 80, 777–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rihan, F.A., Hashish, A., Al-Maskari, F., Hussein, M.S., Ahmed, E., Riaz, M.B., Yafia, R.: Dynamics of tumor-immune system with fractional-order. J. Tumor Res. 2, 109–115 (2016)

    Article  Google Scholar 

  18. Gómez-Aguilar, J.F., López-López, M.G., Alvarado-Martínez, V.M., Baleanu, D., Khan, H.: Chaos in a cancer model via fractional derivatives with exponential decay and Mittag-Leffler law. Entropy 19, 681 (2017)

    Article  MathSciNet  Google Scholar 

  19. Zeinadini, M., Namjoo, M.: Approximation of fractional-order Chemostat model with nonstandard finite difference scheme. Hacettepe J. Math. Stat. 46, 469–482 (2017)

    MathSciNet  MATH  Google Scholar 

  20. Gorenflo, R., Mainardi, F.: Fractional Calculus, Fractals and Fractional Calculus in Continuum Mechanics. Springer, pp. 223–276 (1997)

    Google Scholar 

  21. Mainardi, F.: Fractional Calculus, Fractals and Fractional Calculus in Continuum Mechanics. Springer, pp. 291–348 (1997)

    Google Scholar 

  22. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16, 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Springer (2014)

    Google Scholar 

  24. Liouville, J.: Memoire sur quelques questiona de geometrie et de mechanique, et sur un nouveau genre de calcul pour resoudre ces questions. J. Ecole Polytech. 13, 16–18 (1831)

    Google Scholar 

  25. Oldham, K., Spanier, J.: The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order. Elsevier (1974)

    Google Scholar 

  26. Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 1–13 (2015)

    Google Scholar 

  27. Atangana, A., Baleanu, D.: Application of fixed point theorem for stability analysis of a nonlinear Schrodinger with Caputo-Liouville derivative. Filomat, JSTOR 31, 2243–2248 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  28. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley (1993)

    Google Scholar 

  29. Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications. Elsevier (1998)

    Google Scholar 

  30. Mickens, R.E.: Nonstandard Finite Difference Models of Differential Equations. World Scientific (1994)

    Google Scholar 

  31. Mickens, R.E.: Nonstandard finite difference schemes for reaction-diffusion equations. Numer. Methods Partial Differential Equations Int. J. 15, 201–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Mickens, R,.E.: A nonstandard finite difference scheme for a Fisher PDE having nonlinear diffusion. Comput. Math. Appl. 45, 429–436 (2003)

    Google Scholar 

  33. Lee, H.A., Imran, M., Monteiro-Riviere, N.A., Colvin, V.L., Yu, W.W., Riviere, J.E.: Biodistribution of quantum dot nanoparticles in perfused skin: evidence of coating dependency and periodicity in arterial extraction. Nano Lett. 7, 2865–2870 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the reviewers, whose comments really helped to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahmineh Azizi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Azizi, T. (2023). An Application of the Grünwald-Letinkov Fractional Derivative to a Study of Drug Diffusion in Pharmacokinetic Compartmental Models. In: Bretti, G., Natalini, R., Palumbo, P., Preziosi, L. (eds) Mathematical Models and Computer Simulations for Biomedical Applications. MCHBS 2021. SEMA SIMAI Springer Series, vol 33. Springer, Cham. https://doi.org/10.1007/978-3-031-35715-2_1

Download citation

Publish with us

Policies and ethics