Skip to main content

Dual Spaces Corresponding to Spaces of Differentiable Sections of a Vector Bundle: Localization of Sections and Functionals

  • Chapter
  • First Online:
Foundations of Geometric Continuum Mechanics

Part of the book series: Advances in Mechanics and Mathematics ((ACM,volume 49))

  • 232 Accesses

Abstract

As implied by the paradigm outlined above, generalized forces are modeled mathematically as elements of the dual space \(C^{r}(\pi )^{*}=C^{r}(W)^{*}\) of the space of \(C^{r}\)-sections of a vector bundle \(\pi :W\to \mathcal {X}\). This section reviews the basic notions corresponding to such continuous linear functionals, with particular attention to localization properties. We start with the case where \(\mathscr {X}\) is a manifold without boundary and continue with the case where bodies are modeled by compact manifolds with corners.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Atiyah and R. Bott. A Lefschetz fixed point formula for elliptic complexes: I. Annals of Mathematics, 86:374–407, 1967.

    Article  MathSciNet  MATH  Google Scholar 

  2. M. Atiyah and I. Singer. The index of elliptic operators: I. Annals of Mathematics, 87:484–530, 1968.

    Article  MathSciNet  MATH  Google Scholar 

  3. J. Dieudonné. Treatise on Analysis, volume III. Academic Press, 1972.

    MATH  Google Scholar 

  4. M. Grosser, M. Kunzinger, M. Oberguggenberger, and R. Steinbauer. Geometric Theory of Generalized Functions with Applications to General Relativity. Springer, 2001.

    Book  MATH  Google Scholar 

  5. G. Glaeser. Etude de quelques algebres tayloriennes. Journal d’Analyse Mathématique, 6:1–124, 1958.

    Article  MathSciNet  MATH  Google Scholar 

  6. V. Guillemin and S. Sternberg. Geometric Asymptotics. American Mathematical Society, 1977.

    Book  MATH  Google Scholar 

  7. L. Hörmander. The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis. Springer, 1990.

    Google Scholar 

  8. J. Korbas. Handbook of Global Analysis, chapter Distributions, vector distributions, and immersions of manifolds in Euclidean spaces, pages 665–724. Elsevier, 2008.

    Google Scholar 

  9. B. Malgrange. Ideals of Differentiable functions, volume 3 of Tata Institute of Fundamental Research. Oxford University Press, 1966.

    Google Scholar 

  10. R.B. Melrose. Differential Analysis on Manifolds with Corners. www-math.mit.edu/~rbm/book.html, 1996.

  11. P. Michor. Manifolds of mappings for continuum mechanics. chapter 3 of Geometric Continuum Mechanics, R. Segev and M. Epstein (Eds.), pages 3–75. Springer, 2020.

    Google Scholar 

  12. A.I. Oksak. On invariant and covariant Schwartz distributions in the case of a compact linear Groups. Communications in Mathematical Physics, 46:269–287, 1976.

    Article  MathSciNet  MATH  Google Scholar 

  13. R. S. Palais. Foundations of Global Non-Linear Analysis. Benjamin, 1968.

    MATH  Google Scholar 

  14. L. Schwartz. Lectures on Modern Mathematics (Volume 1), chapter Some applications of the theory of distributions, pages 23–58. Wiley, 1963.

    Google Scholar 

  15. R.T. Seeley. Extension of C functions defined in a half space. Proceeding of the American Mathematical Society, 15:625–626, 1964.

    MathSciNet  MATH  Google Scholar 

  16. R. Steinbauer. Distributional Methods in General Relativity. PhD thesis, Universität Wien, 2000.

    Google Scholar 

  17. F. Trèves. Topological Vector Spaces, Distributions and Kernels. Academic Press, 1967.

    MATH  Google Scholar 

  18. H. Whitney. Analytic extensions of functions defined in closed sets. Transactions of the American Mathematical Society, 36:63–89, 1934.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Segev, R. (2023). Dual Spaces Corresponding to Spaces of Differentiable Sections of a Vector Bundle: Localization of Sections and Functionals. In: Foundations of Geometric Continuum Mechanics. Advances in Mechanics and Mathematics(), vol 49. Birkhäuser, Cham. https://doi.org/10.1007/978-3-031-35655-1_17

Download citation

Publish with us

Policies and ethics