Skip to main content

Translating Animal Findings to Humans in Tinnitus Research

  • Chapter
  • First Online:
Textbook of Tinnitus
  • 207 Accesses

Abstract

Animal models of tinnitus have made significant contributions to the current understanding of its neurobiological mechanisms and to the evaluation of potential tinnitus treatments. They have also played an important role in identifying biomarkers for tinnitus diagnosis and treatment. Nonetheless, translating findings from animal studies to humans remains a challenge due to the different and complex pathophysiologies of tinnitus, heterogeneity of the testing population, different methodologies and outcome measures, and differences in drug pharmacokinetics between animals and humans. Future translational studies that employ stricter subject selection criteria, appropriate calculations for human equivalent doses (HEDs) based on body mass, more precise control of electrode locations and stimulation parameters, and a set of comprehensive outcome measures could be expected to achieve more consistent results that may translate more readily to humans suffering from tinnitus. Considering the heterogeneity of tinnitus, developing personalised treatments based on sensitive and reliable biomarkers is urgently needed for both animal and human studies.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

FDA:

US Food and Drug Administration

GABA :

γ-aminobutyric acid

NMDA:

N-methyl-d-aspartate

References

  1. Liu F, Han X, Li Y, Yu S. Acupuncture in the treatment of tinnitus: a systematic review and meta-analysis. Eur Arch Otorhinolaryngol. 2016;273(2):285–94.

    Article  PubMed  Google Scholar 

  2. Hoare DJ, Kowalkowski VL, Kang S, Hall DA. Systematic review and meta-analyses of randomized controlled trials examining tinnitus management. Laryngoscope. 2011;121(7):1555–64.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Hesser H, Weise C, Westin VZ, Andersson G. A systematic review and meta-analysis of randomized controlled trials of cognitive-behavioral therapy for tinnitus distress. Clin Psychol Rev. 2011;31(4):545–53.

    Article  PubMed  Google Scholar 

  4. Song JJ, Vanneste S, Van de Heyning P, De Ridder D. Transcranial direct current stimulation in tinnitus patients: a systemic review and meta-analysis. ScientificWorldJournal. 2012;2012:427941.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Stolzberg D, Hayes SH, Kashanian N, Radziwon K, Salvi RJ, Allman BL. A novel behavioral assay for the assessment of acute tinnitus in rats optimized for simultaneous recording of oscillatory neural activity. J Neurosci Methods. 2013;219(2):224–32.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jastreboff PJ, Brennan JF, Sasaki CT. An animal model for tinnitus. Laryngoscope. 1988;98(3):280–6.

    Article  CAS  PubMed  Google Scholar 

  7. Lobarinas E, Sun W, Cushing R, Salvi R. A novel behavioral paradigm for assessing tinnitus using schedule-induced polydipsia avoidance conditioning (SIP-AC). Hear Res. 2004;190(1–2):109–14.

    Article  PubMed  Google Scholar 

  8. Brozoski TJ, Spires TJD, Bauer CA. Vigabatrin, a GABA transaminase inhibitor, reversibly eliminates tinnitus in an animal model. J Assoc Res Otolarnygol. 2007;8(1):105–18.

    Article  Google Scholar 

  9. Turner J, Larsen D, Hughes L, Moechars D, Shore S. Time course of tinnitus development following noise exposure in mice. J Neurosci Res. 2012;90(7):1480–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zheng Y, Hamilton E, Stiles L, McNamara E, de Waele C, Smith PF, et al. Acoustic trauma that can cause tinnitus impairs impulsive control but not performance accuracy in the 5-choice serial reaction time task in rats. Neuroscience. 2011;180:75–84.

    Article  CAS  PubMed  Google Scholar 

  11. Heffner HE. A two-choice sound localization procedure for detecting lateralized tinnitus in animals. Behav Res Methods. 2011;43(2):577–89.

    Article  PubMed  Google Scholar 

  12. Zuo H, Lei D, Sivaramakrishnan S, Howie B, Mulvany J, Bao J. An operant-based detection method for inferring tinnitus in mice. J Neurosci Methods. 2017;291:227–37.

    Article  PubMed  Google Scholar 

  13. Dehmel S, Eisinger D, Shore SE. Gap prepulse inhibition and auditory brainstem-evoked potentials as objective measures for tinnitus in Guinea pigs. Front Syst Neurosci. 2012;6:42.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Brozoski TJ, Bauer CA, Caspary DM. Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci. 2002;22:2383–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nowotny M, Remus M, Kossl M, Gaese BH. Characterization of the perceived sound of trauma-induced tinnitus in gerbils. J Acoust Soc Am. 2011;130(5):2827–34.

    Article  PubMed  Google Scholar 

  16. Heffner HE, Koay G. Tinnitus and hearing loss in hamsters (Mesocricetus auratus) exposed to loud sound. Behav Neurosci. 2005;119(3):734–42.

    Article  PubMed  Google Scholar 

  17. Kaltenbach JA, Zhang J, Afman CE. Plasticity of spontaneous neural activity in the dorsal cochlear nucleus after intense sound exposure. Hear Res. 2000;147:282–92.

    Article  CAS  PubMed  Google Scholar 

  18. Chang H, Chen K, Kaltenbach JA, Zhang J, Godfrey DA. Effects of acoustic trauma on dorsal cochlear nucleus neuron activity in slices. Hear Res. 2002;164:59–68.

    Article  PubMed  Google Scholar 

  19. Kaltenbach JA, Zacharek MA, Zhang J, Frederick S. Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett. 2004;355:121–5.

    Article  CAS  PubMed  Google Scholar 

  20. Eggermont JJ, Roberts LE. The neuroscience of tinnitus. Trends Neurosci. 2004;27(11):676–82.

    Article  CAS  PubMed  Google Scholar 

  21. Brozoski TJ, Ciobanu L, Bauer CA. Central neural activity in rats with tinnitus evaluated with manganese-enhanced magnetic resonance imaging (MEMRI). Hear Res. 2007;228(1–2):168–79.

    Article  PubMed  Google Scholar 

  22. Kalappa BI, Brozoski TJ, Turner JG, Caspary DM. Single unit hyperactivity and bursting in the auditory thalamus of awake rats directly correlates with behavioural evidence of tinnitus. J Physiol. 2014;592(Pt 22):5065–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen YC, Li X, Liu L, Wang J, Lu CQ, Yang M, et al. Tinnitus and hyperacusis involve hyperactivity and enhanced connectivity in auditory-limbic-arousal-cerebellar network. elife. 2015;4:e06576.

    Article  PubMed  PubMed Central  Google Scholar 

  24. He J, Aa JY, Sun JG, Smith PF, De Ridder D, Wang GJ, et al. Metabolic changes in the brain and blood of rats following acoustic trauma, tinnitus and hyperacusis. Prog Brain Res. 2021;262:399–430.

    Article  PubMed  Google Scholar 

  25. He J, Zhu YJ, Aa JY, Smith PF, De Ridder D, Wang GJ, et al. Brain metabolic changes in rats following acoustic trauma. Front Neurosci. 2017;11:260.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Boyen K, de Kleine E, van Dijk P, Langers DRM. Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hear Res. 2014;312:48–59.

    Article  PubMed  Google Scholar 

  27. Husain FT, Schmidt SA. Using resting state functional connectivity to unravel networks of tinnitus. Hear Res. 2014;307:153–62.

    Article  PubMed  Google Scholar 

  28. Leaver AM, Renier L, Chevillet MA, Morgan S, Kim HJ, Rauschecker JP. Dysregulation of limbic and auditory networks in tinnitus. Neuron. 2011;69(1):33–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Maudoux A, Lefebvre P, Cabay JE, Demertzi A, Vanhaudenhuyse A, Laureys S, et al. Auditory resting-state network connectivity in tinnitus: a functional MRI study. PLoS One. 2012;7(5):e36222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Song JJ, De Ridder D, Van de Heyning P, Vanneste S. Mapping tinnitus-related brain activation: an activation-likelihood estimation metaanalysis of PET studies. J Nucl Med. 2012;53(10):1550–7.

    Article  PubMed  Google Scholar 

  31. Vanneste S, de Heyning PV, De Ridder D. The neural network of phantom sound changes over time: a comparison between recent-onset and chronic tinnitus patients. Eur J Neurosci. 2011;34(5):718–31.

    Article  PubMed  Google Scholar 

  32. Vanneste S, De Ridder D. The auditory and non-auditory brain areas involved in tinnitus. An emergent property of multiple parallel overlapping subnetworks. Front Syst Neurosci. 2012;6:31.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Roberts LE, Eggermont JJ, Caspary DM, Shore SE, Melcher JR, Kaltenbach JA. Ringing ears: the neuroscience of tinnitus. J Neurosci. 2010;30(45):14972–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Henry JA, Roberts LE, Caspary DM, Theodoroff SM, Salvi RJ. Underlying mechanisms of tinnitus: review and clinical implications. J Am Acad Audiol. 2014;25(1):5–22.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Leaver AM, Turesky TK, Seydell-Greenwald A, Morgan S, Kim HJ, Rauschecker JP. Intrinsic network activity in tinnitus investigated using functional MRI. Hum Brain Mapp. 2016;37(8):2717–35.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Simonetti P, Oiticica J. Tinnitus neural mechanisms and structural changes in the brain: the contribution of neuroimaging research. Int Arc Otorhinolaryngol. 2015;19(3):259–65.

    Article  Google Scholar 

  37. Zheng Y, McTavish J, Smith PF. Pharmacological evaluation of drugs in animal models of tinnitus. Curr Top Behav Neurosci. 2021;51:51–82.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Firestone E, Elattma A. Animal models of tinnitus treatment: cochlear and brain stimulation. Curr Top Behav Neurosci. 2021;51:83–129.

    Article  CAS  PubMed  Google Scholar 

  39. Engineer ND, Riley JR, Seale JD, Vrana WA, Shetake JA, Sudanagunta SP, et al. Reversing pathological neural activity using targeted plasticity. Nature. 2011;470(7332):101–U14.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Marks KL, Martel DT, Wu C, Basura GJ, Roberts LE, Schvartz-Leyzac KC, et al. Auditory-somatosensory bimodal stimulation desynchronizes brain circuitry to reduce tinnitus in Guinea pigs and humans. Sci Transl Med. 2018;10(422):eaal3175.

    Article  PubMed  PubMed Central  Google Scholar 

  41. McFerran DJ, Stockdale D, Holme R, Large CH, Baguley DM. Why is there no cure for tinnitus? Front Neurosci. 2019;13:802.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Tyler RS. Patient preferences and willingness to pay for tinnitus treatments. J Am Acad Audiol. 2012;23(2):115–25.

    Article  PubMed  Google Scholar 

  43. Eggermont JJ. Tinnitus: neurobiological substrates. Drug Discov Today. 2005;10(19):1283–90.

    Article  PubMed  Google Scholar 

  44. Wang H, Brozoski TJ, Caspary DM. Inhibitory neurotransmission in animal models of tinnitus: maladaptive plasticity. Hear Res. 2011;279(1–2):111–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Guitton MJ, Caston J, Ruel J, Johnson RM, Pujol R, Puel J-L. Salicylate induces tinnitus through activation of cochlear NMDA receptors. J Neurosci. 2003;23(9):3944–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu SS, Mei L, Chen JY, Huang ZW, Wu H. Expression of immediate-early genes in the dorsal cochlear nucleus in salicylate-induced tinnitus. Eur Arch Otorhinolaryngol. 2015;273:325.

    Article  PubMed  Google Scholar 

  47. Hwang JH, Chen JC, Chan YC. Effects of c-phycocyanin and spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes. PLoS One. 2013;8(3):e58215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Jang CH, Lee S, Park IY, Song A, Moon C, Cho GW. Memantine attenuates salicylate-induced tinnitus possibly by reducing NR2B expression in auditory cortex of rat. Exp Neurobiol. 2019;28(4):495–503.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Godfrey DA, Kaltenbach JA, Chen K, Ilyas O, Liu X, Licari F, et al. Amino acid concentrations in the hamster central auditory system and long-term effects of intense tone exposure. J Neurosci Res. 2012;90(11):2214–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dong S, Mulders WH, Rodger J, Woo S, Robertson D. Acoustic trauma evokes hyperactivity and changes in gene expression in Guinea-pig auditory brainstem. Eur J Neurosci. 2010;31(9):1616–28.

    Article  PubMed  Google Scholar 

  51. Ralli M, Troiani D, Podda MV, Paciello F, Eramo SL, de Corso E, et al. The effect of the NMDA channel blocker memantine on salicylate-induced tinnitus in rats. Acta Otorhinolaryngol Ital. 2014;34(3):198–204.

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Lobarinas E, Yang G, Sun W, Ding D, Mirza N, Dalby-Brown W, et al. Salicylate- and quinine-induced tinnitus and effects of memantine. Acta Otolaryngol Suppl. 2006;126(sup556):13–9.

    Article  Google Scholar 

  53. Zheng Y, McNamara Y, Stiles L, Darlington CL, Smith PF. Evidence that memantine reduces chronic tinnitus caused by acoustic trauma in rats. Front Neurol. 2012;3:127.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Figueiredo RR, Langguth B, Mello de Oliveira P, Aparecida de Azevedo A. Tinnitus treatment with memantine. Otolaryngol Head Neck Surg. 2008;138(4):492–6.

    Article  PubMed  Google Scholar 

  55. Atri A. Current and future treatments in Alzheimer's disease. Semin Neurol. 2019;39(2):227–40.

    Article  PubMed  Google Scholar 

  56. Lee SH, Kim SH, Noh YH, Choi BM, Noh GJ, Park WD, et al. Pharmacokinetics of Memantine after a single and multiple dose of Oral and patch administration in rats. Basic Clin Pharmacol Toxicol. 2016;118(2):122–7.

    Article  CAS  PubMed  Google Scholar 

  57. Browne CJ, Morley JW, Parsons CH. Tracking the expression of excitatory and inhibitory neurotransmission-related proteins and neuroplasticity markers after noise induced hearing loss. PLoS One. 2012;7(3):e33272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Dong S, Rodger J, Mulders WH, Robertson D. Tonotopic changes in GABA receptor expression in Guinea pig inferior colliculus after partial unilateral hearing loss. Brain Res. 2010;1342:24–32.

    Article  CAS  PubMed  Google Scholar 

  59. Zou QZ, Shang XL. Effect of salicylate on the large GABAergic neurons in the inferior colliculus of rats. Acta Neurol Belg. 2012;112(4):367–74.

    Article  PubMed  Google Scholar 

  60. Butt S, Ashraf F, Porter LA, Zhang H. Sodium salicylate reduces the level of GABAB receptors in the rat's inferior colliculus. Neuroscience. 2016;316:41–52.

    Article  CAS  PubMed  Google Scholar 

  61. Bauer CA, Brozoski TJ, Holder TM, Caspary DM. Effects of chronic salicylate on GABAergic activity in rat inferior colliculus. Hear Res. 2000;147(1–2):175–82.

    Article  CAS  PubMed  Google Scholar 

  62. Hakami T. Neuropharmacology of antiseizure drugs. Neuropsychopharmacol Rep. 2021;41:336.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Urits I, Li N, Berardino K, Artounian KA, Bandi P, Jung JW, et al. The use of antineuropathic medications for the treatment of chronic pain. Best Pract Res Clin Anaesthesiol. 2020;34(3):493–506.

    Article  PubMed  Google Scholar 

  64. Bertrand S, Ng GY, Purisai MG, Wolfe SE, Severidt MW, Nouel D, et al. The anticonvulsant, antihyperalgesic agent gabapentin is an agonist at brain gamma-aminobutyric acid type B receptors negatively coupled to voltage-dependent calcium channels. J Pharmacol Exp Ther. 2001;298(1):15–24.

    CAS  PubMed  Google Scholar 

  65. Ng GY, Bertrand S, Sullivan R, Ethier N, Wang J, Yergey J, et al. Gamma-aminobutyric acid type B receptors with specific heterodimer composition and postsynaptic actions in hippocampal neurons are targets of anticonvulsant gabapentin action. Mol Pharmacol. 2001;59(1):144–52.

    Article  CAS  PubMed  Google Scholar 

  66. Kukkar A, Bali A, Singh N, Jaggi AS. Implications and mechanism of action of gabapentin in neuropathic pain. Arch Pharm Res. 2013;36(3):237–51.

    Article  CAS  PubMed  Google Scholar 

  67. Suarez LM, Suarez F, Del Olmo N, Ruiz M, Gonzalez-Escalada JR, Solis JM. Presynaptic NMDA autoreceptors facilitate axon excitability: a new molecular target for the anticonvulsant gabapentin. Eur J Neurosci. 2005;21(1):197–209.

    Article  PubMed  Google Scholar 

  68. Zapp JJ. Gabapentin for the treatment of tinnitus: a case report. Ear Nose Throat J. 2001;80(2):114–6.

    Article  CAS  PubMed  Google Scholar 

  69. Bauer CA, Brozoski TJ. Assessing tinnitus and prospective tinnitus therapeutics using a psychophysical animal model. J Assoc Res Otolaryngol. 2001;2(1):54–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Bauer CA, Brozoski TJ. Effect of gabapentin on the sensation and impact of tinnitus. Laryngoscope. 2006;116(5):675–81.

    Article  CAS  PubMed  Google Scholar 

  71. Piccirillo JF, Finnell J, Vlahiotis A, Chole RA, Spitznagel EJ. Relief of idiopathic subjective tinnitus: is gabapentin effective? Arch Otolaryngol Head Neck Surg. 2007;133(4):390–7.

    Article  PubMed  Google Scholar 

  72. Witsell DL, Hannley MT, Stinnet S, Tucci DL. Treatment of tinnitus with gabapentin: a pilot study. Otol Neurotol. 2007;28(1):11–5.

    Article  PubMed  Google Scholar 

  73. Bakhshaee M, Ghasemi M, Azarpazhooh M, Khadivi E, Rezaei S, Shakeri M, et al. Gabapentin effectiveness on the sensation of subjective idiopathic tinnitus: a pilot study. Eur Arch Otorhinolaryngol. 2008;265(5):525–30.

    Article  PubMed  Google Scholar 

  74. Dehkordi MA, Abolbashari S, Taheri R, Einolghozati S. Efficacy of gabapentin on subjective idiopathic tinnitus: a randomized, double-blind, placebo-controlled trial. Ear Nose Throat J. 2011;90(4):150–8.

    Article  PubMed  Google Scholar 

  75. Sachais BA, Logue JN, Carey MS. Baclofen, a new antispastic drug. A controlled, multicenter trial in patients with multiple sclerosis. Arch Neurol. 1977;34(7):422–8.

    Article  CAS  PubMed  Google Scholar 

  76. Westerberg BD, Roberson JB, Stach BA. A double-blind placebo-controlled trial of baclofen in the treatment of tinnitus. Am J Otol. 1996;17:896–903.

    CAS  PubMed  Google Scholar 

  77. Møller AR. A double-blind placebo-controlled trial of baclofen in the treatment of tinnitus. Am J Otol. 1997;18(2):268–9.

    PubMed  Google Scholar 

  78. Terrence CF, Sax M, Fromm GH, Chang CH, Yoo CS. Effect of baclofen enantiomorphs on the spinal trigeminal nucleus and steric similarities of carbamazepine. Pharmacology. 1983;27(2):85–94.

    Article  CAS  PubMed  Google Scholar 

  79. Fromm GH, Shibuya T, Nakata M, Terrence CF. Effects of D-baclofen and L-baclofen on the trigeminal nucleus. Neuropharmacology. 1990;29(3):249–54.

    Article  CAS  PubMed  Google Scholar 

  80. Sawynok J, Dickson C. D-baclofen is an antagonist at baclofen receptors mediating antinociception in the spinal cord. Pharmacology. 1985;31(5):248–59.

    Article  CAS  PubMed  Google Scholar 

  81. Fromm GH, Terrence CF. Comparison of L-baclofen and racemic baclofen in trigeminal neuralgia. Neurology. 1987;37(11):1725–8.

    Article  CAS  PubMed  Google Scholar 

  82. Zheng Y, Vagal S, Hamilton E, Darlington CL, Smith PF. A dose-response analysis of the effects of L-baclofen on chronic tinnitus caused by acoustic trauma in rats Neuropharmacology. 2012;62(2):940–6.

    CAS  PubMed  Google Scholar 

  83. Auffret M, Rolland B, Deheul S, Loche V, Hennaux C, Cottencin O, et al. Severe tinnitus induced by off-label baclofen. Ann Pharmacother. 2014;48(5):656–9.

    Article  PubMed  Google Scholar 

  84. Nguyen T, Alzahrani T, Biloba G. StatPearls. Treasure Island, FL: StatPearls Publishing LLC; 2021. StatPearls publishing copyright © 2021.

    Google Scholar 

  85. Ibrahim MA, Ramadan HH, Mohammed RN. Evidence that ginkgo Biloba could use in the influenza and coronavirus COVID-19 infections. J Basic Clin Physiol Pharmacol. 2021;32(3):131–43.

    Article  CAS  PubMed  Google Scholar 

  86. Chan PC, Xia Q, Fu PP. Ginkgo biloba leave extract: biological, medicinal, and toxicological effects. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev. 2007;25(3):211–44.

    Article  CAS  PubMed  Google Scholar 

  87. Maclennan KM, Darlington CL, Smith PF. The CNS effects of Ginkgo biloba extracts and ginkgolide B. Prog Neurobiol. 2002;67(3):235–57.

    Article  CAS  PubMed  Google Scholar 

  88. Jastreboff PJ, Zhou S, Jastreboff MM, Kwapisz U, Gryczynska U. Attenuation of salicylate-induced tinnitus by Ginkgo biloba extract in rats. Audiol Neurootol. 1997;2(4):197–212.

    Article  CAS  PubMed  Google Scholar 

  89. Holgers KM, Axelsson A, Pringle I. Ginkgo biloba extract for the treatment of tinnitus. Audiology. 1994;33(2):85–92.

    Article  CAS  PubMed  Google Scholar 

  90. Drew S, Davies E. Effectiveness of Ginkgo biloba in treating tinnitus: double blind, placebo controlled trial. BMJ. 2001;322(7278):73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Morgenstern C, Biermann E. The efficacy of ginkgo special extract EGb 761 in patients with tinnitus. Int J Clin Pharmacol Ther. 2002;40(5):188–97.

    Article  CAS  PubMed  Google Scholar 

  92. Rejai D, Sivakumar A, Balaji N. Ginkgo biloba does not benefit patients with tinnitus: a randomized placebo-controlled double-blind trial and meta-analysis of randomized trials. Clin Otolaryngol Allied Sci. 2004;29:226–31.

    Article  Google Scholar 

  93. Ihl R, Bachinskaya N, Korczyn AD, Vakhapova V, Tribanek M, Hoerr R, et al. Efficacy and safety of a once-daily formulation of Ginkgo biloba extract EGb 761 in dementia with neuropsychiatric features: a randomized controlled trial. Int J Geriatr Psychiatry. 2011;26(11):1186–94.

    Article  PubMed  Google Scholar 

  94. Canis M, Olzowy B, Welz C, Suckfüll M, Stelter K. Simvastatin and Ginkgo biloba in the treatment of subacute tinnitus: a retrospective study of 94 patients. Am J Otolaryngol. 2011;32(1):19–23.

    Article  CAS  PubMed  Google Scholar 

  95. von Boetticher A. Ginkgo biloba extract in the treatment of tinnitus: a systematic review. Neuropsychiatr Dis Treat. 2011;7:441–7.

    Article  Google Scholar 

  96. Tziridis K, Korn S, Ahlf S, Schulze H. Protective effects of Ginkgo biloba extract EGb 761 against noise trauma-induced hearing loss and tinnitus development. Neural Plast. 2014;2014:427298.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Krauss P, Tziridis K, Buerbank S, Schilling A, Schulze H. Therapeutic value of Ginkgo biloba extract EGb 761® in an animal model (Meriones unguiculatus) for noise trauma induced hearing loss and tinnitus. PLoS One. 2016;11(6):e0157574.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Han SS, Nam EC, Won JY, Lee KU, Chun W, Choi HK, et al. Clonazepam quiets tinnitus: a randomised crossover study with Ginkgo biloba. J Neurol Neurosurg Psychiatry. 2012;83(8):821–7.

    Article  PubMed  Google Scholar 

  99. Procházková K, Šejna I, Skutil J, Hahn A. Ginkgo biloba extract EGb 761(®) versus pentoxifylline in chronic tinnitus: a randomized, double-blind clinical trial. Int J Clin Pharm. 2018;40(5):1335–41.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Kaltenbach JA, Afman CE. Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res. 2000;140:165–72.

    Article  CAS  PubMed  Google Scholar 

  101. Hoffmann HJ, Reed G. Epidemiology of tinnitus. In: Tinnitus: theory and management. Hamilton: B.C. Decker; 2004. p. 16–41.

    Google Scholar 

  102. Kraus KS, Canlon B. Neuronal connectivity and interactions between the auditory and limbic systems. Effects of noise and tinnitus. Hear Res. 2012;288(1–2):34–46.

    Article  PubMed  Google Scholar 

  103. Maudoux A, Lefebvre P, Cabay JE, Demertzi A, Vanhaudenhuyse A, Laureys S, et al. Connectivity graph analysis of the auditory resting state network in tinnitus. Brain Res. 2012;1485:10–21.

    Article  CAS  PubMed  Google Scholar 

  104. Rauschecker JP, Leaver AM, Muhlau M. Tuning out the noise: limbic-auditory interactions in tinnitus. Neuron. 2010;66(6):819–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Perreau A, Tyler R, Mancini PC. Programming a Cochlear implant for tinnitus suppression. J Am Acad Audiol. 2020;31(4):302–8.

    Article  PubMed  Google Scholar 

  106. Yin L, Chen X, Lu X, An Y, Zhang T, Yan J. An updated meta-analysis: repetitive transcranial magnetic stimulation for treating tinnitus. J Int Med Res. 2021;49(3):300060521999549.

    Article  PubMed  Google Scholar 

  107. Stegeman I, Velde HM, Robe P, Stokroos RJ, Smit AL. Tinnitus treatment by vagus nerve stimulation: a systematic review. PLoS One. 2021;16(3):e0247221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Byun YJ, Lee JA, Nguyen SA, Rizk HG, Meyer TA, Lambert PR. Transcutaneous electrical nerve stimulation for treatment of tinnitus: a systematic review and meta-analysis. Otol Neurotol. 2020;41(7):e767–e75.

    Article  PubMed  Google Scholar 

  109. Deklerck AN, Marechal C, Pérez Fernández AM, Keppler H, Van Roost D, Dhooge IJM. Invasive neuromodulation as a treatment for tinnitus: a systematic review. Neuromodulation. 2020;23(4):451–62.

    Article  PubMed  Google Scholar 

  110. Conlon B, Langguth B, Hamilton C, Hughes S, Meade E, Connor CO, et al. Bimodal neuromodulation combining sound and tongue stimulation reduces tinnitus symptoms in a large randomized clinical study. Sci Transl Med. 2020;12(564):eabb2830.

    Article  PubMed  Google Scholar 

  111. Yuan T, Yadollahpour A, Salgado-Ramírez J, Robles-Camarillo D, Ortega-Palacios R. Transcranial direct current stimulation for the treatment of tinnitus: a review of clinical trials and mechanisms of action. BMC Neurosci. 2018;19(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Luo H, Zhang X, Nation J, Pace E, Lepczyk L, Zhang J. Tinnitus suppression by electrical stimulation of the rat dorsal cochlear nucleus. Neurosci Lett. 2012;522(1):16–20.

    Article  CAS  PubMed  Google Scholar 

  113. Zhang J, Zhang Y, Zhang X. Auditory cortex electrical stimulation suppresses tinnitus in rats. J Assoc Res Otolaryngol. 2011;12(2):185–201.

    Article  PubMed  Google Scholar 

  114. Yang H, Xiong H, Ou Y, Xu Y, Pang J, Lai L, et al. Effect of repetitive transcranial magnetic stimulation on auditory function following acoustic trauma. Neurol Sci. 2016;37(9):1511–6.

    Article  PubMed  Google Scholar 

  115. Soussi T, Otto SR. Effects of electrical brainstem stimulation on tinnitus. Acta Otolaryngol. 1994;114(2):135–40.

    Article  CAS  PubMed  Google Scholar 

  116. De Ridder D, Vanneste S, van der Loo E, Plazier M, Menovsky T, van de Heyning P. Burst stimulation of the auditory cortex: a new form of neurostimulation for noise-like tinnitus suppression. J Neurosurg. 2010;112(6):1289–94.

    Article  PubMed  Google Scholar 

  117. De Ridder D, De Mulder G, Walsh V, Muggleton N, Sunaert S, Møller A. Magnetic and electrical stimulation of the auditory cortex for intractable tinnitus. Case report. J Neurosurg. 2004;100(3):560–4.

    Article  PubMed  Google Scholar 

  118. Litré CF, Theret E, Tran H, Lévèque M, Portefaix C, Gierski F, et al. Surgical treatment by electrical stimulation of the auditory cortex for intractable tinnitus. Brain Stimul. 2009;2(3):132–7.

    Article  PubMed  Google Scholar 

  119. Vanneste S, Fregni F, De Ridder D. Head-to-head comparison of transcranial random noise stimulation, transcranial AC stimulation, and transcranial DC stimulation for tinnitus. Front Psych. 2013;4:158.

    Google Scholar 

  120. Yakunina N, Nam EC. Direct and transcutaneous Vagus nerve stimulation for treatment of tinnitus: a scoping review. Front Neurosci. 2021;15:680590.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Buell EP, Borland MS, Loerwald KW, Chandler C, Hays SA, Engineer CT, et al. Vagus nerve stimulation rate and duration determine whether sensory pairing produces neural plasticity. Neuroscience. 2019;406:290–9.

    Article  CAS  PubMed  Google Scholar 

  122. Koehler SD, Pradhan S, Manis PB, Shore SE. Somatosensory inputs modify auditory spike timing in dorsal cochlear nucleus principal cells. Eur J Neurosci. 2011;33(3):409–20.

    Article  PubMed  Google Scholar 

  123. Koehler SD, Shore SE. Stimulus-timing dependent multisensory plasticity in the Guinea pig dorsal cochlear nucleus. PLoS One. 2013;8(3):e59828.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Wu C, Martel DT, Shore SE. Transcutaneous induction of stimulus-timing-dependent plasticity in dorsal cochlear nucleus. Front Syst Neurosci. 2015;9:116.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Koehler SD, Shore SE. Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus. J Neurosci. 2013;33(50):19647–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Hamilton C, D'Arcy S, Pearlmutter BA, Crispino G, Lalor EC, Conlon BJ. An investigation of feasibility and safety of bi-modal stimulation for the treatment of tinnitus: an open-label pilot study. Neuromodulation. 2016;19(8):832–7.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat. 2020;236(4):588–611.

    Article  PubMed  Google Scholar 

  128. Yakunina N, Kim SS, Nam EC. BOLD fMRI effects of transcutaneous vagus nerve stimulation in patients with chronic tinnitus. PLoS One. 2018;13(11):e0207281.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Hyvärinen P, Yrttiaho S, Lehtimäki J, Ilmoniemi RJ, Mäkitie A, Ylikoski J, et al. Transcutaneous vagus nerve stimulation modulates tinnitus-related beta- and gamma-band activity. Ear Hear. 2015;36(3):e76–85.

    Article  PubMed  Google Scholar 

  130. Galazyuk A, Brozoski TJ. Animal models of tinnitus: a review. Otolaryngol Clin N Am. 2020;53:469.

    Article  Google Scholar 

  131. von der Behrens W. Animal models of subjective tinnitus. Neural Plast. 2014;2014:741452.

    PubMed  PubMed Central  Google Scholar 

  132. Zheng Y, McPherson K, Smith PF. Effects of early and late treatment with L-baclofen on the development and maintenance of tinnitus caused by acoustic trauma in rats. Neuroscience. 2014;258:410–21.

    Article  CAS  PubMed  Google Scholar 

  133. Beukes EW, Manchaiah V, Allen PM, Andersson G, Baguley DM. Exploring tinnitus heterogeneity. Prog Brain Res. 2021;260:79–99.

    Article  PubMed  Google Scholar 

  134. Figueiredo RR, Rates MA, Azevedo AA, Oliveira PM, Navarro PB. Correlation analysis of hearing thresholds, validated questionnaires and psychoacoustic measurements in tinnitus patients. Braz J Otorhinolaryngol. 2010;76(4):522–6.

    Article  PubMed  Google Scholar 

  135. Nascimento IDP, Almeida AA, Diniz JJ, Martins ML, Freitas T, Rosa M. Tinnitus evaluation: relationship between pitch matching and loudness, visual analog scale and tinnitus handicap inventory. Braz J Otorhinolaryngol. 2019;85(5):611–6.

    Article  PubMed  Google Scholar 

  136. Risey J, Briner W, Guth PS, Norris CH. The superiority of the Goodwin procedure over the traditional procedure in measuring the loudness level of tinnitus. Ear Hear. 1989;10(5):318–22.

    Article  CAS  PubMed  Google Scholar 

  137. Rabau S, Cox T, Punte AK, Waelkens B, Gilles A, Wouters K, et al. Changes over time of psychoacoustic outcome measurements are not a substitute for subjective outcome measurements in acute tinnitus. Eur Arch Otorhinolaryngol. 2015;272(3):573–81.

    Article  PubMed  Google Scholar 

  138. Yamamoto Y, Tamagawa S, Tanioka K, Suzuki T, Hotomi M, Ukai S, et al. Subjective loudness using external noise reflects the loudness and distress of tinnitus: a cross-sectional study. Otol Neurotol. 2020;41(6):e655–e62.

    Article  PubMed  Google Scholar 

  139. Landgrebe M, Azevedo A, Baguley D, Bauer C, Cacace A, Coelho C, et al. Methodological aspects of clinical trials in tinnitus: a proposal for an international standard. J Psychosom Res. 2012;73(2):112–21.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Kang DW, Kim SS, Park DC, Kim SH, Yeo SG. Objective and measurable biomarkers in chronic subjective tinnitus. Int J Mol Sci. 2021;22(12):6619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Haider HF, Hoare DJ, Ribeiro SF, Ribeiro D, Caria H, Trigueiros N, et al. Evidence for biological markers of tinnitus: a systematic review. Prog Brain Res. 2021;262:345–98.

    Article  PubMed  Google Scholar 

  142. Cardon E, Joossen I, Vermeersch H, Jacquemin L, Mertens G, Vanderveken OM, et al. Systematic review and meta-analysis of late auditory evoked potentials as a candidate biomarker in the assessment of tinnitus. PLoS One. 2020;15(12):e0243785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Liu Y, Niu H, Zhu J, Zhao P, Yin H, Ding H, et al. Morphological neuroimaging biomarkers for tinnitus: evidence obtained by applying machine learning. Neural Plast. 2019;2019:1712342.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Simoes J, Neff P, Schoisswohl S, Bulla J, Schecklmann M, Harrison S, et al. Toward personalized tinnitus treatment: an exploratory study based on internet Crowdsensing. Front Public Health. 2019;7:157.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Olivares O, Dabritz JH, King A, Gottlieb E, Halsey C. Research into cancer metabolomics: towards a clinical metamorphosis. Semin Cell Dev Biol. 2015;43:52–64.

    Article  PubMed  Google Scholar 

  146. Li M, Wang X, Aa J, Qin W, Zha W, Ge Y, et al. GC/TOFMS analysis of metabolites in serum and urine reveals metabolic perturbation of TCA cycle in db/db mice involved in diabetic nephropathy. Am J Physiol Renal Physiol. 2013;304(11):F1317–24.

    Article  CAS  PubMed  Google Scholar 

  147. Sethi S, Brietzke E. Omics-based biomarkers: application of metabolomics in neuropsychiatric disorders. Int J Neuropsychopharmacol. 2016;19(3):pyv096.

    Article  Google Scholar 

  148. Huang TL, Lin CC. Advances in biomarkers of major depressive disorder. Adv Clin Chem. 2015;68:177–204.

    Article  CAS  PubMed  Google Scholar 

  149. Rankin NJ, Preiss D, Welsh P, Burgess KEV, Nelson SM, Lawlor DA, et al. The emergence of proton nuclear magnetic resonance metabolomics in the cardiovascular arena as viewed from a clinical perspective. Atherosclerosis. 2014;237(1):287–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Graham SF, Chevallier OP, Elliott CT, Holscher C, Johnston J, McGuinness B, et al. Untargeted metabolomic analysis of human plasma indicates differentially affected polyamine and L-arginine metabolism in mild cognitive impairment subjects converting to Alzheimer's disease. PLoS One. 2015;10(3):e0119452.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Loeb JA. Identifying targets for preventing epilepsy using systems biology. Neurosci Lett. 2011;497(3):205–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Vreeker GCM, Vangangelt KMH, Bladergroen MR, Nicolardi S, Mesker WE, Wuhrer M, et al. Serum N-glycan profiles differ for various breast cancer subtypes. Glycoconj J. 2021;38(3):387–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang X, Zhang L, Sun W, Pei LL, Tian M, Liang J, et al. Changes of metabolites in acute ischemic stroke and its subtypes. Front Neurosci. 2020;14:580929.

    Article  PubMed  Google Scholar 

  154. Bredesen DE. Metabolic profiling distinguishes three subtypes of Alzheimer's disease. Aging (Albany NY). 2015;7(8):595–600.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yiwen Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, Y., Smith, P.F. (2024). Translating Animal Findings to Humans in Tinnitus Research. In: Schlee, W., Langguth, B., De Ridder, D., Vanneste, S., Kleinjung, T., Møller, A.R. (eds) Textbook of Tinnitus. Springer, Cham. https://doi.org/10.1007/978-3-031-35647-6_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35647-6_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35646-9

  • Online ISBN: 978-3-031-35647-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics