Skip to main content

Interactions Between Particles and Surfaces

  • Chapter
  • First Online:
Component Surfaces

Abstract

Interactions between particles and surfaces play a significant role in many technical systems. To better understand the impact of particles on the overall behavior, the interactions between particles and surfaces are investigated experimentally and numerically for three generalized systems. The systems are chosen such that they differ in the number, mechanical properties, and kinematics of the particles, in the applied surrounding fluid, and in the spacial and temporal scales. In system one, the topography resulting from the interaction of abrasive particles being in contact with surfaces is analyzed. Depending on particle size and wetting conditions, the resulting topography varies from uniformly scattered to single local indentations. System two represents impacting particles on surfaces. The rebounce behavior varies strongly depending on the local structure of the surface and the wetting conditions, which can cause additional adhesive forces. System three investigates particles moving in a liquid close to a surface. Though not being in direct contact with the surface, the liquid mediates interactions between the particles and the surface. The particle’s trajectory depends strongly on its elastic modulus. These three systems are used to analyze special particle surface interactions independently. However, the results can also be used to characterize real applications, in which these interactions may occur in combination.

K. M. de Payrebrune and C. Schönecker have contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Denape J (2015) Third body concept and wear particle behavior in dry friction sliding conditions. Key Eng Mater 640:1–12. https://doi.org/10.4028/www.scientific.net/kem.640.1

    Article  Google Scholar 

  2. Popov VL (2016) Kontaktmechanik und Reibung. Springer, Berlin, Heidelberg, 12 Jan 2016. ISBN: 3662459752. https://doi.org/10.1007/978-3-662-45975-1

  3. Stachowiak GW (2014) Engineering tribology. Elsevier, Oxford. ISBN: 9780123970473. https://doi.org/10.1016/c2011-0-07515-4

  4. Bilz R, de Payrebrune KM (2021) Investigation of the influence of velocity in a tribological three-body system containing a single layer of rolling hard particles from a mechanical point of view. In: Tribology international, p 106948. https://doi.org/10.1016/j.triboint.2021.106948

  5. Stachowiak G, Stachowiak G (2001) The effects of particle characteristics on three-body abrasive wear. In: Wear, vol 249, 3–4, pp 201–207, May 2001. https://doi.org/10.1016/s0043-1648(01)00557-9

  6. Bilz R, Sridhar P, de Payrebrune KM (2021) Parameter identification aspects of tribological systems containing hard particles. In: PAMM, vol 21, 1, Dec 2021. https://doi.org/10.1002/pamm.202100018

  7. Bartel D (2010) Simulation von Tribosystemen. Vieweg+Teubner Verlag, 188 pp, 24 Feb 2010. ISBN: 3834812412. https://doi.org/10.1007/978-3-8348-9656-8

  8. Shao Y, Yin Y, Du S, Xia T, Xi L (2018) Leakage monitoring in static sealing interface based on three dimensional surface topography indicator. J Manuf Sci Eng 140, 10. https://doi.org/10.1115/1.4040620

  9. Hao M-M, Wang Y-l, Li Z-T, Sun X-H (2018) Effects of surface topography on hydrodynamic performance of liquid film seals considering cavitation. Ind Lubr Tribol 70, 6:984–992. https://doi.org/10.1108/ilt-12-2016-0321

  10. Marinescu I, Uhlmann E, Doi T (2007) Handbook of lapping and polishing. CRC Press. https://doi.org/10.1201/9781420017632

  11. Woldman M (2014) An experimental and theoretical investigation into threebody abrasive wear. PhD thesis. University of Twente. https://doi.org/10.3990/1.9789036536219

  12. Klocke F (2017) Fertigungsverfahren 2, vol 448, pp 15. Springer GmbH, Nov 2017. ISBN: 9783662533109

    Google Scholar 

  13. Bilz R, de Payrebrune KM (2019) Analytical investigation of the motion of lapping particles. In: PAMM, vol 19, 1, Nov 2019. https://doi.org/10.1002/pamm.201900076

  14. Bilz R, de Payrebrune KM (2023) Development of a simple substitute model to describe the normal force of fluids in narrow gaps. In: PAMM, vol 22, 1. https://doi.org/10.1002/pamm.202200062

  15. Papadopoulos CI, Kaiktsis L, Fillon M (2013) Computational fluid dynamics thermohydrodynamic analysis of three-dimensional sector-pad thrustbearings with rectangular dimples. J Tribol 136, 1. https://doi.org/10.1115/1.4025245

  16. Belkhir N, Bouzid D, Herold V (2009) Surface behavior during abrasive grain action in the glass lapping process. Appl Surf Sci 255, 18:7951–7958. https://doi.org/10.1016/j.apsusc.2009.04.178

  17. Bilz R, de Payrebrune KM (2022) Simulation of non-spherical particles in tribological three-body systems. In: 8th European congress on computational methods in applied sciences and engineering. CIMNE. https://doi.org/10.23967/eccomas.2022.249

  18. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. In: Géotechnique, vol 29, 1, pp 47–65. https://doi.org/10.1680/geot.1979.29.1.47

  19. Hesse R, Krull F, Antonyuk S (2020) Experimentally calibrated CFD-DEM study of air impairment during powder discharge for varying hopper configurations. Powder Technol 372:404–419. https://doi.org/10.1016/j.powtec.2020.05.113

    Article  CAS  Google Scholar 

  20. Weis D, Krull F, Mathy J, Evers M, Thommes M, Antonyuk S (2019) A contact model for the deformation behaviour of pharmaceutical pellets under cyclic loading. Adv Powder Technol 30, 11:2492–2502. https://doi.org/10.1016/j.apt.2019.07.026

  21. Ferziger J, Peri M, Street R (2019) Computational methods for fluid dynamics. Springer International Publishing. ISBN: 9783319996936

    Google Scholar 

  22. Hirt C, Nichols B (1981) Volume of fluid (VOF) method for the dynamics of free boundaries. J Computat Phys 39, 1:201–225. https://doi.org/10.1016/0021-9991(81)90145-5

  23. Young T (1805) III. An essay on the cohesion of fluids. In: Philosophical transactions of the royal society of London, vol 95, pp 65–87. https://doi.org/10.1098/rstl.1805.0005

  24. Grohn P, Oesau T, Heinrich S, Antonyuk S (2022) Investigation of the influence of wetting on the particle dynamics in a fluidized bed rotor granulator by MPT measurements and CFD-DEM simulations. In: Powder technology, vol 408, p 117736. ISSN: 0032-5910. https://doi.org/10.1016/j.powtec.2022.117736

  25. Krull F, Hesse R, Breuninger P, Antonyuk S (2018) Impact behaviour of microparticles with microstructured surfaces: experimental study and DEM simulation. Chem Eng Res Des 135:175–184. https://doi.org/10.1016/j.cherd.2018.05.033

    Article  CAS  Google Scholar 

  26. Hartmüller J (2017) Theoretische und experimentelle Untersuchung von Partikelhaftkräften an Oberflächen. ger. Fortschritt-Berichte Band 14. Kaiserslautern: Technische Universität. ISBN: 9783959740449

    Google Scholar 

  27. Hamaker HC (1937) The London-van der Waals attraction between spherical particles. In: Physica, vol 4, 10, pp 1058–1072, Oct 1937. https://doi.org/10.1016/S0031-8914(37)80203-7

  28. Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16, 3:242–251. ISSN: 0009-2509. https://doi.org/10.1016/0009-2509(61)80035-3

  29. Sondergaard R, Chaney K, Brennen CE (1990) Measurements of solid spheres bouncing off flat plates. J Appl Mech 57, 3:694–699. ISSN: 0021-8936. https://doi.org/10.1115/1.2897079

  30. Mueller P, Antonyuk S, Stasiak M, Tomas J, Heinrich S (2011) The normal and oblique impact of three types of wet granules. Granular Matter 13:455–463. https://doi.org/10.1007/s10035-011-0256-5

    Article  Google Scholar 

  31. Rymuza Z, Pytko S (2012) The effect of scale in tribological testing. J Mater Res Technol 1, 1:13–20. https://doi.org/10.1016/S2238-7854(12)70004-2

  32. Krull F, Mathy J, Breuninger P, Antonyuk S (2021) Influence of the surface roughness on the collision behavior of fine particles in ambient fluids. Powder Technol 392:58–68. https://doi.org/10.1016/j.powtec.2021.06.051

    Article  CAS  Google Scholar 

  33. Barnocky G, Davis RH (1988) Elastohydrodynamic collision and rebound of spheres: experimental verification. In: The physics of fluids, vol 31, 6:1324–1329. https://doi.org/10.1063/1.866725

  34. Rabinovich YI, Adler JJ, Ata A, Singh RK, Moudgil BM (2000) Adhesion between nanoscale rough surfaces: I. Role of asperity geometry. J Colloid Int Sci 232, 1:10–16. ISSN:0021-9797. https://doi.org/10.1006/jcis.2000.7167

  35. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. In: Annalen der Physik, vol 322, 8, pp 549–560, Jan 1905. https://doi.org/10.1002/andp.19053220806

  36. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics: with special applications to particulate media. Mechanics of fluids and transport processes. Springer Netherlands. ISBN: 9789024728770

    Google Scholar 

  37. Faxén H (1922) Der Widerstand gegen die Bewegung einer starren Kugel in einer zähen Flüssigkeit, die zwischen zwei parallelen ebenen Wänden eingeschlossen ist. Annalen der Physik 373:89–119

    Article  Google Scholar 

  38. Ekanayake NI, Berry JD, Harvie DJ (2021) Lift and drag forces acting on a particle moving in the presence of slip and shear near a wall. J Fluid Mech 915. ISSN: 0022-1120. https://doi.org/10.1017/jfm.2021.138

  39. Saffman PG (1965) The lift on a small sphere in a slow shear flow. J Fluid Mech 22, 2:385–400. https://doi.org/10.1017/S0022112065000824

  40. Seifert J (2012) A review of the Magnus effect in aeronautics. In: Progress in aerospace sciences, vol 55, pp 17–45. ISSN: 0376-0421. https://doi.org/10.1016/j.paerosci.2012.07.001

  41. Segré G, Silberberg A (1961) Radial particle displacements in poiseuille flow of suspensions. In: Nature, vol 189, 4760, pp 209–210, Jan 1961. https://doi.org/10.1038/189209a0

  42. Urzay J, Llewellyn Smith SG, Glover BJ (2007) The elastohydrodynamic force on a sphere near a soft wall. In: Physics of fluids, vol 19, 10, p 103106. ISSN: 1070-6631. https://doi.org/10.1063/1.2799148

  43. Rallabandi B, Saintyves B, Jules T, Salez T, Schönecker C, Mahadevan L, Stone HA, Rotation of an immersed cylinder sliding near a thin elastic coating. Phys Rev Fluids 2 (7):074102. https://doi.org/10.1103/PhysRevFluids.2.074102

  44. Murata T (1980) On the deformation of an elastic particle falling in a viscous fluid. J Phys Soc Jpn 48 (5):1738–1745. https://doi.org/10.1143/JPSJ.48.1738

  45. Clift R, Grace J, Weber MB (1978) Drops, and particles. Academic Press, New York. ISBN: 9780121769505

    Google Scholar 

  46. Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Camb Phil Soc 9:8–106. https://doi.org/10.1017/CBO9780511702266.002

    Article  Google Scholar 

  47. Tashibana M, Kitasho K (1976) The Motion of a falling sphere in a viscous fluid and the effects of side walls. In: Memoirs of the Faculty of Engineering Fukui University, vol 24(2)

    Google Scholar 

  48. Noichl I, Schönecker C (2022) Dynamics of elastic, nonheavy spheres sedimenting in a rectangular duct. In: Soft matter, vol 18, 12, pp 2462–2472. https://doi.org/10.1039/D1SM01789F.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kristin M. de Payrebrune or Clarissa Schönecker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

de Payrebrune, K.M. et al. (2024). Interactions Between Particles and Surfaces. In: Aurich, J.C., Hasse, H. (eds) Component Surfaces. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-35575-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35575-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35574-5

  • Online ISBN: 978-3-031-35575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics