Skip to main content

Manufacturing-Morphology-Property Relationships for Rotating Shaft Sealing Systems

  • Chapter
  • First Online:
Component Surfaces

Abstract

In this chapter, results of the investigation of manufacturing-morphology-property (MMP) relationships for radial shaft seals, with a special focus on the shaft countersurface of the seal, are presented. This includes experimental investigations of alternative manufacturing and micro structuring processes such as turning, micro grinding, micro milling, shot- and micro peening and lapping. Furthermore, the influence of metastable austenitic shaft materials, of the rubber material and fillers and of lubricants on wear, friction and function of sealing systems with radial shaft seals was also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Johnston DE (1999) Design aspects of modern rotary shaft seals. Proc Inst Mech Eng Part J J Eng Tribol 213(3):203–213. https://doi.org/10.1243/1350650991542947

  2. DIN3761 (1984) Rotary shaft lip type seals for automobile; applications. standard. withdrawn. Beuth Verlag, Berlin

    Google Scholar 

  3. DIN3760 (1996) Rotary shaft lip type seals. standard. Beuth Verlag, Berlin

    Google Scholar 

  4. Freudenberg Sealing Technologies GmbH & Co. KG (2015) Technical manual, chapter 01: simmerrings and rotary seals, vol 1

    Google Scholar 

  5. Bellaire D, Thielen S, Burkhart C, Münnemann K, Hasse H, Sauer B (2022) Investigation of radial shaft seal swelling using a special tribometer and magnetic resonance imaging. ACS Omega 7(14):11671–11677. https://doi.org/10.1021/acsomega.1c06521

  6. Burkhart C, Emrich S, Kopnarski M, Sauer B (2020) Excessive shaft wear due to radial shaft seals in lubricated environment. Part II: measures against excessive shaft wear. Wear 462–463:203483. https://doi.org/10.1016/j.wear.2020.203483

  7. Burkhart C, Emrich S, Kopnarski M, Sauer B (2020) Excessive shaft wear due to radial shaft seals in lubricated environment. Part I: analysis and mechanisms. Wear 460–461:203419. https://doi.org/10.1016/j.wear.2020.203419

  8. Burkhart C, Heier M, Merz R, Lösch J, Wagner C, Thielen S, Sauer B, Kopnarski M, Hasse H (2021) Einfluss des Schmierstoffs auf Verschleißverhalten und-Mechanismen im System Radialwellendichtring. 62. Tribologie-Fachtagung (GfT) 2021

    Google Scholar 

  9. Thielen S, Breuninger P, Hotz H, Burkhart C, Schollmayer T, Sauer B, Antonyuk S, Kirsch B, Aurich JC (2021) Improving the tribological properties of radial shaft seal countersurfaces using experimental micro peening and classical shot peening processes. Tribol Int 155:106764. https://doi.org/10.1016/j.triboint.2020.106764

  10. Heyn WO (1968) Shaft surface finish is an important part of the sealing system. J Lubr Technol 90(2):375–381. https://doi.org/10.1115/1.3601571

  11. Johnston DE, Vogt R (1995) Rotary shaft seal friction, the influence of design, material, oil and shaft surface. In: SAE technical paper series. SAE International. https://doi.org/10.4271/950764

  12. Vogt R, Bock E (2014) Shaft surface effects on radial shaft seals. In: Encyclopedia of lubricants and lubrication. Springer, Berlin, Heidelberg, pp 1739–1746. https://doi.org/10.1007/978-3-642-22647-2_338

  13. Thielen S, Magyar B, Sauer B (2020) Thermoelastohydrodynamic lubrication simulation of radial shaft sealing rings. J Tribol 142(5). https://doi.org/10.1115/1.4045802

  14. Thielen S, Foko FF, Magyar B, Sauer B (2018) Sealing contact shaft structure design using EHL simulation. In: Proceedings of the 17th EDF/PPRIME workshop. Green Sealing, Paris, France

    Google Scholar 

  15. Burkhart C, Thielen S, Sauer B (2020) Online determination of reverse pumping values of radial shaft seals and their tribologically equivalent system. Tribologie und Schmierungstechnik 67. ISSN: 07243472. https://doi.org/10.30419/TuS-2020-0025

  16. Frölich D, Magyar B, Sauer B, Mayer P, Kirsch B, Aurich J, Skorupski R, Smaga M, Beck T, Eifler D (2015) Investigation of wear resistance of dry and cryogenic turned metastable austenitic steel shafts and dry turned and ground carburized steel shafts in the radial shaft seal ring system. Wear 328–329:123–131. https://doi.org/10.1016/j.wear.2015.02.004. Apr

    Article  CAS  Google Scholar 

  17. Raid I, Seewig, Frölich D, Sauer B, Mayer P, Schneider F, Aurich J (2014) Kinematische Simulation gedrehter Wellenlaufflächen. wt Werkstatttechnik online 104(5):279–287

    Google Scholar 

  18. Thielen S, Magyar B, Sauer B, Schneider F, Mayer P, Kirsch B, Müller R, Harbou EV, Aurich JC (2017) Functional investigation of zero lead radial shaft seal counter-surfaces turned with a special method. Tribol Int. https://doi.org/10.1016/j.triboint.2017.02.002.

  19. Otto V (1988) Scene-of-the-crime—running surfaces in the sealing interface of shaft seal to shaft. In: SAE technical paper series. SAE International. https://doi.org/10.4271/880306

  20. Padgurskas J, Rukuiza R (1998) Senkung der Verlustleistung und des Verschleißes bei der Paarung RWDR/Welle. 2. Vortrag. II. Hamburger Dichtungstechnisches Kolloquium: Dynamische Dichtungen. Hamburg. Techn. Univ

    Google Scholar 

  21. Hermes J, Hüttinger A, Prem E (2015) New approval process for dynamic tightness tests for gear units. VDI-Berichte 2255:771–782

    Google Scholar 

  22. Schuler P (2014) Einfluss von Grenzflächeneffekten auf den Dichtmechanismus der Radial-Wellendichtung

    Google Scholar 

  23. Engelke T, Poll G (2008) Prüfverfahren zur Untersuchung der Verträglichkeit von Getriebeabdichtungen und Ölen. In: Gesellschaft für Tribologie e.V., Fahrzeugtechnik, Zerspanungs- und Umformtechnik, Prüfen, Messen, Kontrollieren, Tribologische Systeme, Maschinenelemente und Antriebstechnik. Prüfen, Messen,Kontrollieren, Aachen

    Google Scholar 

  24. Kanzaki TKY, Kawahara Y (1989) A study of blistering phenomenon on rubber seals. In: 12th international conference on fluid sealing, pp 27–36

    Google Scholar 

  25. Klaiber M (2013) Betriebs-und Benetzungseigenschaften im Dichtsystem Radial- Wellendichtung am Beispiel von additivierten synthetischen Schmierölen

    Google Scholar 

  26. Thatte A, Salant RF (2012) Effects of multi-scale viscoelasticity of polymers on high-pressure, high-frequency sealing dynamics. Tribol Int 52:75–86. https://doi.org/10.1016/j.triboint.2012.02.024. Aug

    Article  CAS  Google Scholar 

  27. Thielen S, Magyar B, Piros A (2016) Reconstruction of three-dimensional turned shaft surfaces with fractal functions. Tribol Int 95:349–357. https://doi.org/10.1016/j.triboint.2015.11.028. Mar

    Article  Google Scholar 

  28. Frölich D, Magyar B, Sauer B (2014) A comprehensive model of wear, friction and contact temperature in radial shaft seals. Wear 311:71–80

    Article  Google Scholar 

  29. Frölich D (2016) Strategien und Modelle zur Simulation des Betriebsverhaltens von Radial-Wellendichtringen. PhD thesis, Technische Universität Kaiserslautern. ISBN: 9783959740302

    Google Scholar 

  30. Jennewein B, Frölich D, Sauer B (2021) Simulation of the radial force of radial shaft seal rings at different temperatures and aging conditions. In: ISC Internationale Dichtungstagung, Stuttgart

    Google Scholar 

  31. Engelke T (2011) Einfluss der Elastomer-Schmierstoff-Kombination auf das Betriebsverhalten von Radialwellendichtringen. Dissertation, Leibniz Universität Hannover

    Google Scholar 

  32. Frölich D, Magyar B, Sauer B (2014) Semi-analytical model for the contact temperature calculation in radial shaft seals. In: STLE-annual meeting. Lake Buena Vista, Florida

    Google Scholar 

  33. Magyar B, Frölich D, Sauer B (2013) Temperaturberechnung im RWDRDichtkontakt. In: 54. Tribologie-Fachtagung, Göttingen

    Google Scholar 

  34. Archard JF (1953) Contact and rubbing of flat surfaces. J Appl Phys 24(8):981–988. https://doi.org/10.1063/1.1721448

  35. Fleischer G (1967) Energiebilanzierung der Festkörperreibung als Grundlage zur energetischen Verschleißberechnung (Teil 1). Schmierungstechnik 7(8):225–230

    Google Scholar 

  36. Burkhart C, Weyrich D, Thielen S, Schollmayer T, Sauer B (2021) Development and optimization of a tribometer for radial shaft seals. J Tribol 143(4). https://doi.org/10.1115/1.4049597

  37. Magyar BSB (2013) Contact modeling of rough surfaces. In: 5th world tribology congress, Torino, Italy

    Google Scholar 

  38. Magyar B, Sauer B (2016) Methods for the simulation of the pressure, stress, and temperature distribution in the contact of fractal generated rough surfaces. Proc Inst Mech Eng Part J J Eng Tribol 231(4):489–502. https://doi.org/10.1177/1350650115593962

  39. Foko FF, Burkhart C, Thielen S, Sauer B (2022) Analysis of the sealing capability of radial shaft sealing rings using a semi-analytical contact model. Tribol Online 17(2):97–109. https://doi.org/10.2474/trol.17.97

  40. Thielen S (2019) Entwicklung eines TEHD-Tribosimulationsmodells für Radialwellendichtringe. PhD thesis, Technische Universität Kaiserslautern. ISBN: 978-3-95974-120-0

    Google Scholar 

  41. Thielen S, Sauer B (2020) Thermo-Elastohydrodynamische Simulation von Radialwellendichtringen. Tribologie und Schmierungstechnik 67. ISSN: 07243472. https://doi.org/10.30419/TuS-2020-0013

  42. Burkhart C (2022) Ein Beitrag zum Verständnis des Verschleißverhaltens im SystemRadialwellendichtring. PhD thesis, Technische Universität Kaiserslautern

    Google Scholar 

  43. Magyar B, Thielen S, Löwenstein M, Becker A, Sauer B (2018) EHD simulation eines kettengelenkes. Tribol Schmierungstech 65:40–47

    Google Scholar 

  44. Kamga LS, Meffert D, Magyar B, Oehler M, Sauer B (2022) Simulative investigation of the influence of surface texturing on the elastohydrodynamic lubrication in chain joints. Tribol Int 171:107564. https://doi.org/10.1016/j.triboint.2022.107564

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Thielen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Thielen, S. et al. (2024). Manufacturing-Morphology-Property Relationships for Rotating Shaft Sealing Systems. In: Aurich, J.C., Hasse, H. (eds) Component Surfaces. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-35575-2_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35575-2_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35574-5

  • Online ISBN: 978-3-031-35575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics