Skip to main content

Manufacturing of Areal Material Measures

  • Chapter
  • First Online:
Component Surfaces

Abstract

Whereas the profile-based measurement and the calibration of the corresponding measuring instruments has been applied for a long time, the discipline of areal surface topography measuring instrument calibration still faces challenges. In the CRC 926, the design of corresponding material measures which can map the metrological characteristics to be considered in areal surface topography measurement just as well as the manufacturing of areal material measures using micro-milling and direct laser writing were examined. The results of different parameter studies for the design and manufacturing are presented in the following.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Naming of specific manufactured is done solely for sake of completeness and does not necessarily imply an endorsement of the named companies nor that the products are necessarily the best for the purpose.

References

  1. Stout K (1993) The development of methods for the characterisation of roughness in three dimensions. European Report EUR 15178N

    Google Scholar 

  2. Blunt L, Jiang X (2003) Advanced techniques for assessment surface topography: development of a basis for 3D surface texture standards “SURFSTAND”. Kogan Page Science, London. https://doi.org/10.1016/B978-1-903996-11-9.X5000-2

  3. Seewig J, Eifler M (2017) Calibration of areal surface topography measuring instruments. In: Fifth international conference on optical and photonics engineering, vol 10449, Asundi AK (ed) International Society for Optics and Photonics. SPIE, p 1044911. https://doi.org/10.1117/12.2270533

  4. ISO 25178-2 (2012) Geometrical Product Specification (GPS) — surface texture: areal — part 2: terms, definitions and surface texture parameters. Beuth Verlag, Berlin

    Google Scholar 

  5. Leach R (2013) Characterisation of areal surface texture. Springer. https://doi.org/10.1007/978-3-642-36458-7

  6. Leach R (2011) Optical measurement of surface topography. Springer. https://doi.org/10.1007/978-3-642-12012-1

  7. DIN Deutsches Institut für Normung e.V. (2010) International vocabulary of metrology - basic and general concepts and associated terms (VIM); German-English Version ISO/IEC Guide99:2007, 3rd edn. Beuth

    Google Scholar 

  8. Leach R, Giusca C, Haitjema H, Evans C, Jiang X (2015) Calibration and verification of areal surface texture measuring instruments. CIRP Ann 64(2):797–813. https://doi.org/10.1016/j.cirp.2015.05.010

  9. ISO 5436-1 (2000) Geometrical product specification (GPS) — surface texture: profile method, measurement standard — part 1: material measures. Beuth Verlag, Berlin

    Google Scholar 

  10. ISO 12179 (2000) Geometrical product specification (GPS) — surface texture: profile method, calibration of contact (Stylus) instruments. Beuth Verlag, Berlin

    Google Scholar 

  11. Eifler M, Hering J, Seewig J, Leach RK, von Freymann G, Hu X, Dai G (2020) Comparison of material measures for areal surface topography measuring instrument calibration. Surf Topogr: Metrol Prop 8(2):025019. https://doi.org/10.1088/2051-672x/ab92ae

  12. DIN EN ISO 25178-70 (2014) Geometrical product specification (GPS) — surface texture: areal — Part 70: material measures. Beuth Verlag, Berlin

    Google Scholar 

  13. DIN EN ISO 25178-600 (2019) Geometrical product specifications (GPS) — surface texture: areal — Part 600: metrological characteristics for areal topography measuring methods. Beuth Verlag, Berlin

    Google Scholar 

  14. ISO 25178-700 (2022) Geometrical product specifications (GPS) — Surface texture: Areal — Part 700: Calibration, adjustment and verification of areal topography measuring instruments

    Google Scholar 

  15. VDI 2655 Part 1.1 (2008) Optical measurement and microtopographies - calibration of interference microscopes and depth measurement standards for roughness measurement. Verein deutscher Ingenieure, Düsseldorf

    Google Scholar 

  16. VDI 2655 Part 1.2 (2010) Optical measurement of microtopography - calibration of confocal microscopes and depth setting standards for roughness measurement. Verein deutscher Ingenieure, Düsseldorf

    Google Scholar 

  17. Nemoto K, Yanagi K, Aketagawa M, Yoshida I, Uchidate M, Miyaguchi T, Maruyama H (2009) Development of a roughness measurement standard with irregular surface topography for improving 3D surface texture measurement. Meas Sci Technol 20(8):084023. https://doi.org/10.1088/0957-0233/20/8/084023

    Article  CAS  Google Scholar 

  18. Eifler M, Klauer K, Kirsch B, Aurich JC, Seewig J (2021) Performance verification of areal surface texture measuring instruments with the Sk- parameters. Measurement 173:108550. https://doi.org/10.1016/j.measurement.2020.108550

    Article  Google Scholar 

  19. Krüger-Sehm R, Bakucz P, Jung L, Wilhelms H (2007) Chirp-Kalibriernormale für Oberflächenmessgeräte. tm – Technisches Messen 74(11):572–576. https://doi.org/10.1524/teme.2007.74.11.572

  20. Hillmann VJW, Krystek M (1997) Superfeine Rauhnormale: ... mit unregelmäßigen Profil zum Kalibrieren von mehchanisch und optisch antastenden Oberflächenmeßgeräten. qz – Qualität und Zuverlässigkeit 42(1):76–79

    Google Scholar 

  21. Frühauf J, Krönert S (2005) Wet etching of silicon gratings with triangular profiles. Microsyst Technol 11(12):1287–1291

    Article  Google Scholar 

  22. Krüger-Sehm R, Dziomba T, Dai G (2004) Profile assessment of nano roughness standards by contact and non-contact methods. In: Dietzsch M (ed) Proceedings of the XI. International colloquium on surfaces: part II. Shaker, Aachen (2004), pp 31–40

    Google Scholar 

  23. Häsing J (1965) Herstellung und Eigenschaften von Referenznormalen für das Einstellen von Oberflächenmeßgeräten. Werkstatttechnik 55(8):380–382

    Google Scholar 

  24. Frühauf J, Krüger-Sehm R, Felgner A, Dziomba T (2012) Areal roughness standards. In: Proceedings of the 12th euspen international conference, pp 133–136

    Google Scholar 

  25. Frühauf J, Gärtner E, Koenders L, Felgner A (2016) Vergleichsproben aus Silizium für die Flächenrauheit. tm – Technisches Messen 83(12):681–695. https://doi.org/10.1515/teme-2016-0025

  26. Leach R, Giusca C, Rickens K, Riemer O, Rubert P (2014) Development of material measures for performance verifying surface topography measuring instruments. Surf Topogr: Metrol Prop 2(2):025002. https://doi.org/10.1088/2051-672X/2/2/025002

    Article  Google Scholar 

  27. Uchidate M, Yanagi K, Yoshida I, Shimizu T, Iwabuchi A (2011) Generation of 3D random topography datasets with periodic boundaries for surface metrology algorithms and measurement standards. Wear 271(3). The 12th international conference on metrology and properties of engineering surfaces, pp 565–570. https://doi.org/10.1016/j.wear.2010.04.035

  28. Gao F, Leach RK, Petzing J, Coupland JM (2007) Surface measurement errors using commercial scanning white light interferometers. Meas Sci Technol 19(1):015303. https://doi.org/10.1088/0957-0233/19/1/015303

    Article  CAS  Google Scholar 

  29. Leach R, Giusca C, Guttmann M, Jakobs P-J, Rubert P (2015) Development of low-cost material measures for calibration of the metrological characteristics of areal surface texture instruments. CIRP Ann 64(1):545–548. https://doi.org/10.1016/j.cirp.2015.03.002

    Article  Google Scholar 

  30. Chen Y, Zhang X, Luo T, Liu X, Huang W (2013) Fabrication and characterization of areal roughness specimens for applications in scanning probe microscopy. Meas Sci Technol 24(5):055402. https://doi.org/10.1088/0957-0233/24/5/055402

    Article  CAS  Google Scholar 

  31. Seewig J, Eifler M, Wiora G (2014) Unambiguous evaluation of a chirp measurement standard. Surf Topogr: Metrol Prop 2(4):045003. https://doi.org/10.1088/2051-672x/2/4/045003

    Article  Google Scholar 

  32. Giusca CL, Leach RK, Helary F, Gutauskas T, Nimishakavi L (2012) Calibration of the scales of areal surface topography measuring instruments: part 1. Measurement noise and residual flatness. Meas Sci Technol 23(3):035008. https://doi.org/10.1088/0957-0233/23/3/035008

  33. Giusca CL, Leach RK, Helery F (2012) Calibration of the scales of areal surface topography measuring instruments: part 2. Amplification, linearity and squareness. Meas Sci Technol 23(6):065005. https://doi.org/10.1088/0957-0233/23/6/065005

  34. Giusca CL, Leach RK (2013) Calibration of the scales of areal surface topography measuring instruments: part 3. Resolution. Meas Sci Technol 24(10):105010. https://doi.org/10.1088/0957-0233/24/10/105010

  35. Leach R, Haitjema H, Su R, Thompson A (2020) Metrological characteristics for the calibration of surface topography measuring instruments: a review. Meas Sci Technol 32(3):032001. https://doi.org/10.1088/1361-6501/abb54f

    Article  CAS  Google Scholar 

  36. DIN EN ISO 25178-2 (2012) Geometrische Produktspezifikation (GPS) – Oberflächenbeschaffenheit: Flächenhaft - Teil 2: Begriffe und Oberflächen-Kenngrößen. Beuth Verlag, Berlin

    Google Scholar 

  37. Fujii A, Suzuki H, Yanagi K (2011) Development of measurement standards for verifying functional performance of surface texture measuring instruments. J Phys: Conf Ser 311:012009. https://doi.org/10.1088/1742-6596/311/1/012009

    Article  Google Scholar 

  38. Krüger-Sehm R, Frühauf J, Dziomba T (2005) Determination of the short wavelength cutoff of interferential and confocal microscopes. In: Thomas T, Rosén BG, Zahouani HH (ed) Proceedings of metrology and properties of engineering surfaces, pp 21–27

    Google Scholar 

  39. Frühauf J, Krönert S (2004) Linear silicon gratings with different profiles: trapezoidal, triangular, rectangular, arched. In: Dietzsch M (ed) Proceedings of the XI. International colloquium on surfaces: part II. Shaker, Aachen, pp 75–83

    Google Scholar 

  40. Brand U, Kleine-Besten T (2000) Development of a special CMM for dimensional metrology on microsystem components

    Google Scholar 

  41. Koenders L, Bergmans R, Garnaes J, Haycocks J, Korolev N, Kurosawa T, Meli F, Park BC, Peng GS, Picotto GB, Prieto E, Gao S, Smereczynska B, Vorburger T, Wilkening G (2003) Comparison on nanometrology: nano 2–step height. Metrologia 40(1A):04001–04001. https://doi.org/10.1088/0026-1394/40/1a/04001

    Article  Google Scholar 

  42. Leach R, Giusca C (2011) Calibration of optical surface topography measuring instruments. In: Leach R (ed) Optical measurement of surface topography. Springer, Berlin, Heidelberg, pp 49–70. https://doi.org/10.1007/978-3-642-12012-1_4

  43. Kim KJ, Jung CS, Hong TE (2007) A new method for the calibration of the vertical scale of a stylus profilometer using multiple delta-layer films. Meas Sci Technol 18(9):2750–2754. https://doi.org/10.1088/0957-0233/18/9/002

    Article  CAS  Google Scholar 

  44. Eifler M, Schneider F, Seewig J, Kirsch B, Aurich JC (2016) Manufacturing of new roughness standards for the linearity of the vertical axis - feasibility study optimization. Eng Sci Technol Int J 19(4):1993–2001. https://doi.org/10.1016/j.jestch.2016.06.009

    Article  Google Scholar 

  45. Song J (1988) Random profile precision roughness calibration specimens. Surf Topogr 1:303–314

    Google Scholar 

  46. Kourouklis C (2007) Entwicklung und Fertigung von Nano-Raunormalen. PhD Dissertation, Garbsen (ed) PZH, Produktionstechnisches Zentrum

    Google Scholar 

  47. Gatzen HH, Kourouklis C (2001) The fabrication of nano-roughness standards for the calibration of atomic force microscopes. In: Proceedings of the 16th ASPE annual meeting (2001), pp 493–496

    Google Scholar 

  48. Rubert P, Frenzel C (2004) The use of standard specimens to check stylus tip size in surface measuring instruments. In: Dietzsch M (ed) Proceedings of the XI. International colloquium on surfaces: part II. Shaker, Aachen, pp 129–138

    Google Scholar 

  49. Franke M, Jusko O, Krystek M, Neugebauer M, Neuschaefer-Rube U, Wäldele F (2004) Artefacts and test procedures for contour measuring instruments. In: Dietzsch M (ed) Proceedings of the XI. International colloquium on surfaces: part II. Shaker, Aachen, pp 102–107

    Google Scholar 

  50. Ville J (2003) Calibration procedures for stylus and optical instrumentation. In: Blunt L, Jiang X (ed) Advanced techniques for assessment surface topography: development of a basis for 3D surface texture standards “SURFSTAND”. Kogan Page Science, London, pp 119–174

    Google Scholar 

  51. Eifler M, Hering J, von Freymann G, Seewig J (2018) Manufacturing of the ISO 25178–70 material measures with direct laser writing: a feasibility study. Surf Topogr: Metrol Prop 6(2):024010. https://doi.org/10.1088/2051-672X/aabe18

  52. Volk R, Feifel S (2014) Full scale calibration of a combined tactile contour and roughness measurement device. In: Measurement technology and intelligent instruments XI, vol 613. Key engineering materials. Trans Tech Publications Ltd, pp 94–100. https://doi.org/10.4028/www.scientific.net/KEM.613.94

  53. Su R, Wang Y, Coupland J, Leach R (2017) On tilt and curvature dependent errors and the calibration of coherence scanning interferometry. Opt Express 25(4):3297–3310. https://doi.org/10.1364/OE.25.003297

    Article  Google Scholar 

  54. Tan Ö (2012) Characterization of micro- and nanometer resolved technical surfaces with function-oriented parameters. Shaker, Aachen

    Google Scholar 

  55. Dai G, Jung L, Pohlenz F, Danzebrink H-U, Krüger-Sehm R, Hasche K, Wilkening G (2004) Measurement of micro-roughness using a metrological large range scanning force microscope. Meas Sci Technol 15(10):2039–2046. https://doi.org/10.1088/0957-0233/15/10/013

    Article  CAS  Google Scholar 

  56. Dziomba T, Koenders L, Danzebrink H, Wilkening G (2004) Lateral & vertical calibration of scanning probe microscopes and their measurement uncertainty. In: Dietzsch M (ed) Proceedings of the XI. International colloquium on surfaces: part II. Shaker, Aachen, pp 117–128

    Google Scholar 

  57. Press WH, Teukolsky SA, Vetterling WT, Flannery BP (2007) Numerical recipes, 3rd edn. Cambridge University Press

    Google Scholar 

  58. Seewig J, Eifer M, Hüser D, Meess R (2019) Rk material measure. In: tm – Technisches Messen 2019. https://doi.org/10.1515/teme-2019-0091

  59. Klauer K, Eifler M, Kirsch B, Böß V, Seewig J, Aurich JC (2021) Analysis of dimensional accuracy for micro-milled areal material measures with kinematic simulation. Int J Adv Manuf Technol 116(9):3087–3102. ISSN: 1433-3015. https://doi.org/10.1007/s00170-021-07629-8

  60. ISO 16610-41 (2015) Geometrical product specification (GPS) — filtration - part 41: morphological profile filters: disk and horizontal line-segment filters (ISO 16610-41:2015). Beuth Verlag, Berlin

    Google Scholar 

  61. Keksel A, Lohfink AP, Eifler M, Garth C, Seewig J (2020) Virtual topography measurement with transfer functions derived by fitted time series models. Meas Sci Technol 31(5):055008. https://doi.org/10.1088/1361-6501/ab5131

  62. Keksel A, Ströer F, Seewig J (2018) Bayesian approach for circle fitting including prior knowledge. Surf Topogr: Metrol Prop 6(3):035002. https://doi.org/10.1088/2051-672X/aad2b4

    Article  Google Scholar 

  63. Eifler M, Keksel A, Seewig J (2019) Comparison of material measures for the determination of transfer characteristics of surface topography measuring instruments. Surf Topogr: Metrol Prop 7(1):015024. https://doi.org/10.1088/2051-672x/ab0dc6

    Article  Google Scholar 

  64. Keksel A, Eifler M, Seewig J (2020) A model of confocal microscopy measurements combining empirical and physical properties. Meas Sci Technol 32(2):025008. https://doi.org/10.1088/1361-6501/abbe3a

    Article  CAS  Google Scholar 

  65. Hock S (1996) Hochgeschwindigkeitsfäsen im Werkzeug- und Großformenbau. Dissertation. Technische Hochschule Darmstadt

    Google Scholar 

  66. Urban B (2009) Kinematische und mechanische Wirkung des Kugelkopffräsens. Dissertation. Leibniz Universität Hannover

    Google Scholar 

  67. Tönshoff HK, Camacho JH (1987) Technologie des Mehrachsen-Hohlformfräsens. Umformtechnisches Kolloquium Hannover 12:20.1–20.14

    Google Scholar 

  68. Klauer K (2022) Mikrofräsen flächenhafter Kalibriernormale auf Basis realer Bauteiloberflächen. Dissertation. Technische Universität Kaiserslautern

    Google Scholar 

  69. Nespor D (2015) Randzonenbeeinflussung durch die Rekonturierung komplexer Investitionsgüter aus Ti-6Al-4V. Dissertation. Leibniz Universität Hannover

    Google Scholar 

  70. Reichenbach IG (2017) Beitrag zur Beherrschung der Mikrofräsbearbeitung von Polymethylmethacrylat. Dissertation. Technische Universität Kaiserslautern

    Google Scholar 

  71. Finzer T (2001) Verschleißprognose bei der Hochgeschwindigkeitsbearbeitung mit Kugelkopfwerkzeugen. Dissertation. Technische Universität Darmstadt

    Google Scholar 

  72. Hieu NT (2007) Modellierung des Hochgeschwindigkeitsfräsens mit Kugelkopffräsern unter besonderer Berücksichtigung der Oberflächengüte. Dissertation. Otto-von-Guericke-Universität Magdeburg

    Google Scholar 

  73. Vollertsen F, Biermann D, Hansen HN, Jawahir I, Kuzman K (2009) Size effects in manufacturing of metallic components. CIRP Ann 58(2):566–587. https://doi.org/10.1016/j.cirp.2009.09.002

    Article  Google Scholar 

  74. Klauer K, Eifler M, Kirsch B, Seewig J, Aurich J (2020) Correlation between different cutting conditions, surface roughness and dimensional accuracy when ball end micro milling material measures with freeform surfaces. Mach Sci Technol 24(3):446–464. https://doi.org/10.1080/10910344.2019.1698611

    Article  Google Scholar 

  75. Klauer K, Eifler M, Kirsch B, Seewig J, Aurich J (2020) Ball end micro milling of areal material measures: influence of the tilt angle on the resulting surface topography. Product Eng 14(2):239–252. https://doi.org/10.1007/s11740-019-00943-x

    Article  Google Scholar 

  76. Klauer K, Eifler M, Kirsch B, Seewig J, Aurich JC (2019) Micro milling of areal material measures: influence of the manufacturing parameters on the surface quality. In: Production at the leading edge of technology. Springer, pp 259–268. https://doi.org/10.1016/j.procir.2018.05.083

  77. Eifler M, Klauer K, Kirsch B, Aurich JC, Seewig J (2021) Performance verification of areal surface texture measuring instruments with the Sk-parameters. Measurement 173:108550. https://doi.org/10.1016/j.measurement.2020.108550

    Article  Google Scholar 

  78. Eifler M, Klauer K, Seewig J, Kirsch B, Aurich J (2019) Model-based design of areal material measures with component surfaces. Surf Topogr: Metrol Prop 7(4):044003. https://doi.org/10.1088/2051-672X/ab5c83

    Article  Google Scholar 

  79. Hohmann JK, Renner M, Waller EH, von Freymann G (2015) Three-dimensional \(\upmu \)-printing: an enabling technology. Adv Opt Mater 3:1488. https://doi.org/10.1002/adom.201500328

    Article  CAS  Google Scholar 

  80. Fischer J, Wegener M (2013) Three-dimensional optical laser lithograph beyond the diffraction limit. Laser & Photon Rev 7(1):22–44. https://doi.org/10.1002/lpor.201100046

    Article  CAS  Google Scholar 

  81. Hering J (2020) Von der STED inspirierten Zwei-Photonen Laserlithographie zur industriellen Metrologie. PhD thesis. Technische Universität Kaiserslautern

    Google Scholar 

  82. Ritacco T, Aceti DM, De Domenico G, Giocondo M, Mazzulla A, Cipparrone G, Pagliusi P (2022) Tuning cholesteric selective reflection in situ upon two-photon polymerization enables structural multicolor 4D microfabrication. Adv Opt Mater 2101526. https://doi.org/10.1002/adom.202101526

  83. Babi M, Riesco R, Boyer L, Fatona A, Accardo A, Malaquin L, Moran-Mirabal J (2021) Tuning the nanotopography and chemical functionality of 3D printed scaffolds through cellulose nanocrystal coatings. ACS Appl Bio Mater 4(12):8443–8455. https://doi.org/10.1021/acsabm.1c00970

  84. Kumar A, Asadollahbaik A, Kim J, Lahlil K, Thiele S, Herkommer AM, Chormaic SN, Kim J, Gacoin T, Giessen H, Fick J (2022) Emission spectroscopy of NaYF 4: Eu Nanorods optically trapped by Fresnel lens fibers. Photon Res 10(2):332–339. https://doi.org/10.1364/prj.434645

    Article  CAS  Google Scholar 

  85. Stassi S, Cooperstein I, Tortello M, Pirri CF, Magdassi S, Ricciardi C (2021) Reaching silicon-based NEMS performances with 3D printed nanomechanical resonators. Nat Commun 12(1):1–9. https://doi.org/10.1038/s41467-021-26353-1

    Article  CAS  Google Scholar 

  86. Kunze FL, Henning T, Klar PJ (2021) Taking internally wetted capillary electrospray emitters to the sub-ten-micrometer scale with 3D microlithography. AIP Adv 11(10):105315. https://doi.org/10.1063/5.0066619

    Article  Google Scholar 

  87. Schulz J, Vaidya S, Jörg C (2021) Topological photonics in 3D micro-printed systems. APL Photon 6(8):080901. https://doi.org/10.1063/5.0058478

    Article  Google Scholar 

  88. Jörg C, Vaidya S, Noh J, Cerjan A, Augustine S, von Freymann G, Rechtsman MC (2022) Observation of quadratic (Charge-2) Weyl point splitting in near-infrared photonic crystals. Laser & Photon Rev 16(1):2100452. https://doi.org/10.1002/lpor.202100452

    Article  CAS  Google Scholar 

  89. Eifler M, Seewig J, Hering J, von Freymann G (2015) Calibration of z-axis linearity for arbitrary optical topography measuring instruments. In: Optical measurement systems for industrial inspection IX, vol 9525. SPIE, pp 237–246. https://doi.org/10.1117/12.2190737

  90. Eifler M, Hering J, Von Freymann G, Seewig J (2018) Calibration sample for arbitrary metrological characteristics of optical topography measuring instruments. Optics Expr 26(13):16609–16623. https://doi.org/10.1364/OE.26.016609

    Article  CAS  Google Scholar 

  91. Hering J, Eifler M, Hofherr L, Ziegler C, Seewig J, von Freymann G (2018) Two-photon laser lithography in optical metrology. In: Advanced fabrication technologies for micro/nano optics and photonics XI, vol 10544. SPIE, pp 108–115. https://doi.org/10.1117/12.2289900

  92. Gross K, Eifler M, Hering J, von Freymann G, Seewig J (2021) Metrological characteristics of material measures depending on manufacturing parameters in direct laser writing and external stress factors. In: Optical measurement systems for industrial inspection XII, vol 11782. SPIE, pp 115–127. https://doi.org/10.1117/12.2591655

  93. Arrhenius S (1889) Über die Reaktionsgeschwindigkeit bei der Inversion von Rohrzucker durch Säuren. Zeitschrift für physikalische Chemie 4(1):226–248. https://doi.org/10.1515/zpch-1889-0416

    Article  Google Scholar 

  94. Dai G, Hu X, Hering J, Eifler M, Seewig J, von Freymann G (2021) Define and measure the dimensional accuracy of two-photon laser lithography based on its instrument transfer function. J Phys: Photon 3:034002. https://doi.org/10.1088/2515-7647/abfaa7

    Article  Google Scholar 

  95. Eifler M, Hering J, Keksel A, von Freymann G, Seewig J (2021) Towards a continuous frequency band chirp material measure for surface topography measuring instrument calibration. In: Optical measurement systems for industrial inspection XII, vol 11782. SPIE (2021), pp 99–114. https://doi.org/10.1117/12.2591935

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Seewig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seewig, J., von Freymann, G., Aurich, J.C., Eifler, M., Hering-Stratemeier, J., Klauer-Dobrowolski, K. (2024). Manufacturing of Areal Material Measures. In: Aurich, J.C., Hasse, H. (eds) Component Surfaces. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-35575-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35575-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35574-5

  • Online ISBN: 978-3-031-35575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics