Skip to main content

Interrelationship of Manufacturing, Surface Morphology, and Properties of Titanium

  • Chapter
  • First Online:
Component Surfaces

Abstract

Manufacturing of titanium parts modifies the surface morphology mostly with the goal of a functionalization like grooves to change the wettability or to act as reservoirs for lubricants, for instance. While the function of the surface is adapted to special efforts, it must be considered how the new surface morphology acts on mechanical properties like the fatigue limit. Therefore, it is necessary to know which hardening mechanisms are activated during the change of the morphology. To do so, we analyzed the processes during manufacturing and measured the modified morphology of the surface with classical and new methods. The main influence on the fatigue limit is given by the changed roughness or newly introduced notches at the surface. These imperfections must be taken into account when calculating the consequences on the fatigue limit. Thereby, it is of high relevance to be aware of the interaction between the size of the imperfection and the governing microstructural dimensions, i.e., the grain size in titanium because the same imperfection can reduce the fatigue limit in a fine-grained metal while it has no influence on the fatigue limit in a coarse-grained metal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kerscher E (2014) Influence of Microstructure and Micro Notches on the Fatigue Limit. Proc Eng 14:210–217. https://doi.org/10.1016/j.proeng.2014.06.251

    Article  Google Scholar 

  2. Rögner J, Kerscher E, Schulze V, Löhe D (2008) Mechanical properties of primary shaped notched micro specimens made of aluminum bronze. Adv Eng Mater 10(6):529–533. https://doi.org/10.1002/adem.200800032

  3. Schmid E, Boas W (1935) Kristallplastizität mit besonderer Berücksichtigung der Metalle. Springer, Berlin

    Google Scholar 

  4. Man J, Obrtlík K, Polák D (2009) Extrusions and intrusions in fatigued metals. Part 1. State of the art and history. Philos Mag 89(16):1295–1336. https://doi.org/10.1080/14786430902917616

  5. Navarro A, Rios ERDL (1988) An alternative model of blocking of dislocations at grain boundaries. Philos Mag A 57(1):37–42. https://doi.org/10.1080/01418618808204497

    Article  Google Scholar 

  6. Bruzzone A, Costa H, Lonardo P, Lucca D (2008) Advances in engineered surfaces for functional performance. CIRP Ann 57(2):750–769. https://doi.org/10.1016/j.cirp.2008.09.003

    Article  Google Scholar 

  7. Whitehead KA, Colligon J, Verran J (2005) Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. Colloids Surf B: Biointerfaces 41(2–3):129–138. https://doi.org/10.1016/j.colsurfb.2004.11.010

    Article  CAS  Google Scholar 

  8. Schneider F, Lohkamp R, Sousa F, Müller R, Aurich J (2013) Investigation of the resulting surface in ultra-precision turning of crystalline titanium. In: Proceedings of the 13th EUSPEN international conference. Berlin, Germany, pp 72–75

    Google Scholar 

  9. Schneider F, Lohkamp R, Sousa F, Müller R, Aurich J (2014) Analysis of the surface integrity in ultra-precision Cutting of Cp-titanium by investigating the chip formation. Proc CIRP 13:55–60. https://doi.org/10.1016/j.procir.2014.04.010

    Article  Google Scholar 

  10. Schneider F, Bohley M, Lohkamp R, Sousa F, Müller R, Aurich J (2014) Development of a quick-stop-device to investigate chip formation in micro and nanomachining. In: Proceedings of the 14th international conference of the European society for precision engineering and nanotechnology (EUSPEN). Dubrovnik, Croatia

    Google Scholar 

  11. Dornfeld D, Min S, Takeuchi Y (2006) Recent advances in mechanical micromachining. CIRP Ann 55(2):745–768. https://doi.org/10.1016/j.cirp.2006.10.006

    Article  Google Scholar 

  12. Vollertsen F (2008) Categories of size effects. Prod Eng 2(4):377–383. https://doi.org/10.1007/s11740-008-0127-z

    Article  Google Scholar 

  13. Cotterell M, Byrne G (2008) Characterisation of chip formation during orthogonal cutting of titanium alloy Ti-6Al-4V. CIRP J Manuf Sci Technol 1(2):81–85. https://doi.org/10.1016/j.cirpj.2008.09.017

    Article  Google Scholar 

  14. Cedergren S, Petti G, Sjöberg G (2013) On the influence of work material microstructure on chip formation, cutting forces and acoustic emission when machining Ti-6Al-4V. Proc CIRP 12:55–60. https://doi.org/10.1016/j.procir.2013.09.011

    Article  Google Scholar 

  15. Schneider F, Effgen C, Kirsch B, Aurich JC (2019) Manufacturing and preparation of micro cutting tools: influence on chip formation and surface topography when micro cutting titanium. Prod Eng 13(6):731–741. https://doi.org/10.1007/s11740-019-00927-x

    Article  Google Scholar 

  16. Lee EH (1969) Elastic-plastic deformation at finite strains

    Google Scholar 

  17. de Souza Neto E, Peri? D, Dutko M, Owen D (1996) Design of simple low order finite elements for large strain analysis of nearly incompressible solids. Int J Solids Struct 33(20–22):3277–3296

    Google Scholar 

  18. Fischer A (1992) Optimization. A special Newton-type optimization method. 24(3–4):269–284

    Google Scholar 

  19. Kieren-Ehses S, Böhme L, Morales-Rivas L, Lösch J, Kirsch B, Kerscher E, Kopnarski M, Aurich JC (2021) The influence of the crystallographic orientation when micro machining commercially pure titanium: a size effect. Precis Eng 72:158–171. https://doi.org/10.1016/j.precisioneng.2021.04.007

    Article  Google Scholar 

  20. Löhe D, Vöhringer O (2000) Metallic structural materials: design of microstructure. In: Grabowski H, Rude S, Grein G (eds) Universal design theory, pp 147–167

    Google Scholar 

  21. Grau P, Ullner C, Behncke H-H (1997) Uncertainty of depth sensing hardness. Mater Testing 39(9):362–367. https://doi.org/10.1515/mt-1997-390909

    Article  CAS  Google Scholar 

  22. Laurent-Brocq M, Béjanin E, Champion Y (2015) Influence of roughness and tilt on nanoindentation measurements: a quantitative model. Scanning 37(5):350–360. https://doi.org/10.1002/sca.21220

    Article  Google Scholar 

  23. Qasmi M, Delobelle P (2006) Influence of the average roughness R<B on the precision of the young’s modulus and hardness determination using nanoindentation technique with a Berkovich indenter. Surf Coatings Technol 201(3–4):1191–1199. https://doi.org/10.1016/j.surfcoat.2006.01.058

    Article  CAS  Google Scholar 

  24. Bohley M, Reichenbach I, Kieren-Ehses S, Heberger L, Arrabiyeh P, Merz R, Böhme L, Hering J, Kirsch B, Kopnarski M, Kerscher E, von Freymann G, Aurich J (2018) Coating of ultra-small micro end mills: analysis of performance and suitability of eight different hard-coatings. J Manuf Mater Process 2(2):22. https://doi.org/10.3390/jmmp2020022

    Article  CAS  Google Scholar 

  25. Böhme L, Keksel A, Ströer F, Bohley M, Kieren-Ehses S, Kirsch B, Aurich JC, Seewig J, Kerscher E (2019) Micro hardness determination on a rough surface by using combined indentation and topography measurements. Surf Topogr: Metrol Prop 7(4):045021. https://doi.org/10.1088/2051-672x/ab518a

    Article  CAS  Google Scholar 

  26. Meyer E (1908) Untersuchungen über Härteprüfung und Härt. In: Zeitsch. d. Ver. d. Ing.

    Google Scholar 

  27. Oliver W, Pharr G (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7(6):1564–1583. https://doi.org/10.1557/jmr.1992.1564

    Article  CAS  Google Scholar 

  28. DIN EN ISO 14577-2 (2015) Metallic materials - instrumented indentation test for hardness and materials parameters: Part 2: verification and calibration of testing machines

    Google Scholar 

  29. Böhme L, Morales-Rivas L, Diederichs S, Kerscher E (2018) Crystal CAxis mapping of hcp metals by conventional reflected polarized light microscopy: application to untextured and textured cp-titanium. Mater Charact 145:573–581. https://doi.org/10.1016/j.matchar.2018.09.024

    Article  CAS  Google Scholar 

  30. Bähme L, Ströer F, Keksel A, Seewig J, Kerscher E (2020) Forecast of the Fatigue Crack Initiation Site of Commercially Pure Titanium Miniature Specimens with Local Surface Topography Data. In: Villechaise P, Appolaire B, Castany P, Dehmas M, Delaunay C, Delfosse J, Denquin A, Gautier E, Germain L, Gey N, Gloriant T, Hascoët J-Y, Hémery S, Millet Y, Monceau D, Pettinari-Sturmel F, Piellard M, Prima F, Viguier B (eds) MATEC web of conferences, vol 321. p 11008. https://doi.org/10.1051/matecconf/202032111008

  31. Godard C, Klement U, Kerscher E (2017) Electron backscatter diffraction- analysis of deformed micro-milled commercially pure-titanium specimens at different strain values. Int J Mater Res 108(10):798–807. https://doi.org/10.3139/146.111539

    Article  CAS  Google Scholar 

  32. Godard C, Klingler A, Junker T, Kerscher E (2015) The applicability of nanoindentation for the examination of microstructured areas in CP titanium samples. Pract Metallogr 52(6):314–322. https://doi.org/10.3139/147.110342

    Article  CAS  Google Scholar 

  33. Ruffing C, Grad P, Klassen M, Müller R, Kerscher E (2013) Experimental and numerical investigation of the microstructural influence on the deformation behavior of notched cp-titanium specimens. Int J Mater Res 104(6):535–541. https://doi.org/10.3139/146.110902

    Article  CAS  Google Scholar 

  34. Godard C, Bohley M, Aurich JC, Kerscher E (2015) Deformation behaviour of micro-milled cp-titanium specimens under tensile loading. Int J Mater Res 106(6):572–579. https://doi.org/10.3139/146.111233

    Article  CAS  Google Scholar 

  35. DIN 50100:2016-12, Schwingfestigkeitsversuch_-Durchführung und Auswertung von zyklischen Versuchen mit konstanter Lastamplitude für metallische Werkstoffproben und Bauteile. https://doi.org/10.31030/2580844

  36. Böhme L, Godard C, Kerscher E (2016) Influence of engineered surfaces and microstructure on the fatigue limit of titanium. In: Proceedings of 30th international conference on surface modification technologies

    Google Scholar 

  37. Godard C, Kerscher E (2014) Characterization of the Fracture morphology of commercially pure (cp)-titanium micro specimens tested by tension compression fatigue tests. Proc Mater Sci 3:440–446. https://doi.org/10.1016/j.mspro.2014.06.074

    Article  CAS  Google Scholar 

  38. Kühn C, Kerscher E (2013) Consequences of micro-milled and laser structured surfaces of cp-titanium on tension-compression fatigue behaviour. Mater Sci Forum 765:653–657. https://doi.org/10.4028/www.scientific.net/msf.765.653

    Article  Google Scholar 

  39. Murakami Y (2019) Metal Fatigue: effects of small defects and nonmetallic inclusions. Effects of small defects and nonmetallic inclusions. Elsevier Science & Technology. ISBN: 9780128138762. https://doi.org/10.1016/C2016-0-05272-5

  40. DIN EN ISO 13565-2:1998-04, Geometrische Produktspezifikationen (GPS) -Oberflächenbeschaffenheit: Tastschnittverfahren - Oberflächen mit plateauartigen funktionsrelevanten Eigenschaften - Teil 2: Beschreibung der Höhe mittels linearer Darstellung der Materialanteilkurve (ISO 13565-2:1996); Deutsche Fassung EN ISO 13565-2:1997. https://doi.org/10.31030/7434139

  41. Kerscher E, Lang K-H, Vöhringer O, Löhe D (2008) Increasing the fatigue limit of a bearing steel by dynamic strain ageing. Int J Fatigue 30:1838–1842. https://doi.org/10.1016/j.ijfatigue.2008.02.003

    Article  CAS  Google Scholar 

  42. Khayatzadeh A, Sippel J, Guth S, Lang K-H, Kerscher E (2022) Influence of a thermo-mechanical treatment on the fatigue lifetime and crack initiation behavior of a quenched and tempered steel. Metals 12(2):204. https://doi.org/10.3390/met12020204

    Article  CAS  Google Scholar 

  43. Chichili DR, Ramesh KT, Hemker KJ (1998) The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling. Acta Mater 46(3):1025–1043. https://doi.org/10.1016/s1359-6454(97)00287-5

    Article  CAS  Google Scholar 

  44. Gray GT (1997) Influence of strain rate and temperature on the structure. Property behavior of high-purity titanium. Le Journal de Physique IV 07(C3):C3-423–C3-428. https://doi.org/10.1051/jp4:1997373

  45. Salem AA, Kalidindi SR, Doherty RD (2002) Strain hardening regime and microstructure evolution during large strain compression of high purity titanium. Script Mater 46(6):419–423. https://doi.org/10.1016/s1359-6462(02)00005-2

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eberhard Kerscher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kerscher, E. et al. (2024). Interrelationship of Manufacturing, Surface Morphology, and Properties of Titanium. In: Aurich, J.C., Hasse, H. (eds) Component Surfaces. Springer Series in Advanced Manufacturing. Springer, Cham. https://doi.org/10.1007/978-3-031-35575-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35575-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35574-5

  • Online ISBN: 978-3-031-35575-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics