Skip to main content

Memory-Efficient Quantum Information Set Decoding Algorithm

  • Conference paper
  • First Online:
Information Security and Privacy (ACISP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13915))

Included in the following conference series:

  • 656 Accesses

Abstract

Code-based cryptography is a candidate for post-quantum cryptography and the security of code-based cryptosystems relate to the hardness of the syndrome decoding problem. The Information Set Decoding (ISD) algorithm initiated by Prange is a typical method for solving the syndrome decoding problem. Various methods have been proposed that make use of exponentially large lists to accelerate the ISD algorithm. Furthermore, Bernstein (PQCrypto 2010) and Kachigar and Tillich (PQCrypto 2017) applied Grover’s algorithm and quantum walks to obtain quantum ISD algorithms that are much faster than their classical ones. These quantum ISD algorithms also require exponentially large lists as the classical algorithms, and they must be kept in quantum states. In this paper, we propose a new quantum ISD algorithm by combining Both and May’s classical ISD algorithm (PQcrypto 2018), Grover’s algorithm, and Kirshanova’s quantum walk (PQCrypto 2018). The proposed algorithm keeps an exponentially large list in the quantum state just like the existing quantum ISD algorithms, but the list size is much smaller. Although the proposed algorithm is slower than the existing algorithms when there is sufficient quantum memory, it is fastest when the amount of quantum memory is limited. Due to the property, we believe that our algorithm will be the fastest ISD algorithm in actual quantum computing since large-scale quantum computers seem hard to realize.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See also [9, 11] as the follow-up works of the algorithms.

  2. 2.

    We note that the syndrome decoding problem which we study in this paper is full distance decoding.

  3. 3.

    The depth \(d = 2\) is not an optimized value. If we use the larger d, we may be able to obtain the faster quantum ISD algorithms. However, we cannot analyze the time complexity of larger \(d \ge 3\) since the numerical analysis of the computational complexity requires huge time due to more parameters that should be optimized.

  4. 4.

    To be precise, the original \(\texttt{Prange}\) fixes the parameter to \(p = 0\).

  5. 5.

    To be precise, the condition of \(\textbf{P}\) is not the same as that of \(\texttt{Prange}\).

  6. 6.

    To be precise, \(\texttt {MO}\)’s proposed \(\gamma \)-nearest neighbor search algorithm [20] does not work for arbitrary parameters. In such cases, we use other algorithms for solving the problem. See [4] for the detail.

  7. 7.

    Kirshanova proposed other quantum variants of \(\texttt {Stern}\) (Sect. 4 of [16]) that run in time \(\widetilde{\mathcal {O}}(2^{0.059922n})\) (resp. \(\widetilde{\mathcal {O}}(2^{0.059922n})\)) with space \(\widetilde{\mathcal {O}}(2^{0.00897n})\) (resp. \(\widetilde{\mathcal {O}}(2^{0.00808n})\)). Although we tried to find the optimized parameters to obtain the computational complexity via brute force search, we could not find them. Thus, we do not compare our result with these algorithms.

References

  1. Amico, M., Saleem, Z.H., Kumph, M.: Experimental study of Shor’s factoring algorithm using the IBM Q experience. Phys. Rev. A 100, 012305 (2019)

    Article  Google Scholar 

  2. Becker, A., Joux, A., May, A., Meurer, A.: Decoding random binary linear codes in \(2^{n/20}\): How \(1 + 1 = 0\) improves information set decoding. In: Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp. 520–536. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-4_31

    Chapter  MATH  Google Scholar 

  3. Bernstein, D.J.: Grover vs. McEliece. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 73–80. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12929-2_6

    Chapter  Google Scholar 

  4. Both, L.: Solvin k-list problems and their impact on information set decoding. Ph.D. thesis, Ruhr University Bochum, Germany (2018)

    Google Scholar 

  5. Both, L., May, A.: Optimizing BJMM with nearest neighbors : full decoding in \(2^{2n / 21}\) and MCEliece security. In: The Tenth International Workshop on Coding and Cryptography (WCC2017) (2017)

    Google Scholar 

  6. Both, L., May, A.: Decoding linear codes with high error rate and its impact for LPN security. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 25–46. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_2

    Chapter  Google Scholar 

  7. Carrier, K., Debris-Alazard, T., Meyer-Hilfiger, C., Tillich, J.: Statistical decoding 2.0: reducing decoding to LPN. In: Agrawal, S., Lin, D. (eds.) Advances in Cryptology - ASIACRYPT 2022–28th International Conference on the Theory and Application of Cryptology and Information Security. Lecture Notes in Computer Science, vol. 13794, pp. 477–507. Springer (2022). https://doi.org/10.1007/978-3-031-22972-5_17

  8. Dumer, I.: On minimum distance decoding of linear codes. In: Proceedings of the 5th Joint Soviet-Swedish International Workshop Information Theory, pp. 50–52 (1991)

    Google Scholar 

  9. Esser, A.: Revisiting nearest-neighbor-based information set decoding. IACR Cryptol. ePrint Arch, 1328 (2022)

    Google Scholar 

  10. Esser, A., Bellini, E.: Syndrome decoding estimator. In: Hanaoka, G., Shikata, J., Watanabe, Y. (eds.) Public-Key Cryptography - PKC 2022–25th IACR International Conference on Practice and Theory of Public-Key Cryptography, Proceedings, Part I. Lecture Notes in Computer Science, vol. 13177, pp. 112–141. Springer (2022). https://doi.org/10.1007/978-3-030-97121-2_5

  11. Esser, A., May, A., Zweydinger, F.: Mceliece needs a break - solving mceliece-1284 and quasi-cyclic-2918 with modern ISD. In: Dunkelman, O., Dziembowski, S. (eds.) Advances in Cryptology - EUROCRYPT 2022–41st Annual International Conference on the Theory and Applications of Cryptographic Techniques, Proceedings, Part III. Lecture Notes in Computer Science, vol. 13277, pp. 433–457. Springer (2022). https://doi.org/10.1007/978-3-031-07082-2_16

  12. Esser, A., Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M.: Hybrid decoding - classical-quantum trade-offs for information set decoding. In: Cheon, J.H., Johansson, T. (eds.) Post-Quantum Cryptography - 13th International Workshop, PQCrypto 2022, Proceedings. Lecture Notes in Computer Science, vol. 13512, pp. 3–23. Springer (2022). https://doi.org/10.1007/978-3-031-17234-2_1

  13. Finiasz, M., Sendrier, N.: Security bounds for the design of code-based cryptosystems. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 88–105. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_6

    Chapter  Google Scholar 

  14. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Miller, G.L. (ed.) Proceedings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing. pp. 212–219. ACM (1996)

    Google Scholar 

  15. Kachigar, G., Tillich, J.-P.: Quantum information set decoding algorithms. In: Lange, T., Takagi, T. (eds.) PQCrypto 2017. LNCS, vol. 10346, pp. 69–89. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59879-6_5

    Chapter  MATH  Google Scholar 

  16. Kirshanova, E.: Improved quantum information set decoding. In: Lange, T., Steinwandt, R. (eds.) PQCrypto 2018. LNCS, vol. 10786, pp. 507–527. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-79063-3_24

    Chapter  MATH  Google Scholar 

  17. Lee, P.J., Brickell, E.F.: An observation on the security of McEliece’s public-key cryptosystem. In: Barstow, D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 275–280. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-45961-8_25

    Chapter  Google Scholar 

  18. Magniez, F., Nayak, A., Roland, J., Santha, M.: Search via quantum walk. SIAM J. Comput. 40(1), 142–164 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. May, A., Meurer, A., Thomae, E.: Decoding random linear codes in \(\tilde{\cal{O}}(2^{0.054n})\). In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 107–124. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25385-0_6

    Chapter  MATH  Google Scholar 

  20. May, A., Ozerov, I.: On computing nearest neighbors with applications to decoding of binary linear codes. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9056, pp. 203–228. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_9

    Chapter  Google Scholar 

  21. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. Deep Space Netw. Prog. Rep. 44, 114–116 (1978)

    Google Scholar 

  22. Niederreiter, H.: Knapsack-type cryptosystems and algebraic coding theory. Probl. Control Inf. Theory 15(2), 159–166 (1986)

    MathSciNet  MATH  Google Scholar 

  23. NIST. https://csrc.nist.gov/Projects/post-quantum-cryptography/post-quantum-cryptography-standardization/Call-for-Proposals

  24. NIST. https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions

  25. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf. Theory 8(5), 5–9 (1962)

    Article  MathSciNet  Google Scholar 

  26. Schroeppel, R., Shamir, A.: A \(T=O(2^{n/2}), s=O(2^{n/4})\) algorithm for certain NP-complete problems. SIAM J. Comput. 10(3), 456–464 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th Annual Symposium on Foundations of Computer Science, pp. 124–134. IEEE Computer Society (1994)

    Google Scholar 

  28. Stern, J.: A method for finding codewords of small weight. In: Cohen, G.D., Wolfmann, J. (eds.) Coding Theory and Applications, 3rd International Colloquium, Proceedings. Lecture Notes in Computer Science, vol. 388, pp. 106–113. Springer, Berlin (1988). https://doi.org/10.1007/BFb0019850

Download references

Acknowledgement

This work was partially supported by JSPS KAKENHI Grant Number 19K20267 and 21H03440, Japan, and JST CREST Grant Number JPMJCR2113, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Takayasu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kimura, N., Takayasu, A., Takagi, T. (2023). Memory-Efficient Quantum Information Set Decoding Algorithm. In: Simpson, L., Rezazadeh Baee, M.A. (eds) Information Security and Privacy. ACISP 2023. Lecture Notes in Computer Science, vol 13915. Springer, Cham. https://doi.org/10.1007/978-3-031-35486-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35486-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35485-4

  • Online ISBN: 978-3-031-35486-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics