Skip to main content

AEC Digital Twin Data - Why Structure Matters

  • Conference paper
  • First Online:
Advances in Information Technology in Civil and Building Engineering (ICCCBE 2022)

Abstract

With the increasing adoption of the Digital Twin concept in the construction industry in the operations and maintenance phase, researchers and practitioners are increasingly seeking suitable technological solutions for the design and construction phases. While it is widely accepted that the required platforms hosting the digital twin must be cloud-based to fulfill the requirements of ubiquitous accessibility and centralized consistency, questions regarding the need for data schema remain. Some academics argue that a structure-free organization of data is suitable for realizing digital twins and the data streams from and to the respective platform. Hands-on experience in the BIM2TWIN project supports a counter argument, i.e., that structure-free data is insufficient for most use cases around AEC Digital Twins. The sheer information complexity of construction projects requires well-defined data structures enabling unambiguous and error-less interpretation. This becomes apparent when reflecting on the well-established concept of the data-information-knowledge pyramid describing that raw data must be processed into understandable and meaningful high-level information for human decision makers, subsequently providing the basis for cross-project domain knowledge. Based on this observation, we highlight that object-oriented modeling is a widely recognized information modeling technique that facilitates the structuring of complex domain information. We compare it with ontology-based model concepts that provide a similar, yet more abstract means for information modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://bim2twin.eu/.

  2. 2.

    https://hellofuture.orange.com/en/thingin-the-things-graph-platform/.

  3. 3.

    https://www.arangodb.com/.

  4. 4.

    E.g. https://opendatabim.io/.

References

  1. Amor R, Jiang Y, Chen X (2007) BIM in 2007–are we there yet? In: Proceedings of CIB W78 conference on bringing ITC knowledge to work, Maribor, Slovenia, pp 26–29

    Google Scholar 

  2. Ackoff R (1989) From data to wisdom. J Appl Syst Anal 16:3–9

    Google Scholar 

  3. Agocs A, Le Goff JM (2018) A web service based on RESTful API and JSON schema/JSON meta schema to construct knowledge graphs. In:2018 international conference on computer, information and telecommunication systems (CITS), pp 1–5. IEEE

    Google Scholar 

  4. Afsari K, Eastman CM, Castro-Lacouture D (2017) JavaScript Object Notation (JSON) data serialization for IFC schema in web-based BIM data exchange. Autom Constr 77:24–51

    Article  Google Scholar 

  5. Angles R (2012) A comparison of current graph database models. In: 2012 IEEE 28th international conference on data engineering workshops, pp. 171–177. IEEE

    Google Scholar 

  6. Angles R, Thakkar H, Tomaszuk D (2019) RDF and property graphs interoperability: status and Issues. AMW, 2369

    Google Scholar 

  7. Angles R, Thakkar H, Tomaszuk D (2020) Mapping RDF databases to property graph databases. IEEE Access 8:86091–86110

    Article  Google Scholar 

  8. Aragao RR, El-Diraby TE (2019) Using network analytics to capture knowledge: three cases in collaborative energy-oriented planning for oil and gas facilities. J Clean Prod 209:1429–1444

    Article  Google Scholar 

  9. Aragao R, El-Diraby TE (2021) Network analytics and social BIM for managing project unstructured data. Autom Constr 122:103512

    Article  Google Scholar 

  10. Berners-Lee T, Hendler J, Lassila O (2001) The semantic web. Sci Am 284(5): 34-43

    Google Scholar 

  11. Beetz J, Van Leeuwen J, De Vries B (2009) IfcOWL: a case of transforming EXPRESS schemas into ontologies. Ai Edam 23(1):89–101

    Google Scholar 

  12. Bonduel M (2021) A framework for a linked data-based heritage BIM, PhD Thesis, KU Leuven, Belgium

    Google Scholar 

  13. Bizer C, Heath T, Berners-Lee T (2008) Linked data: principles and state of the art. In: World wide web conference, vol 1, p 40

    Google Scholar 

  14. Boje C, Guerriero A, Kubicki S, Rezgui Y (2020) Towards a semantic construction digital twin: directions for future research. Autom Constr 114:103179

    Article  Google Scholar 

  15. van Berlo L, Tauscher H, Liebich T, van Kranenburg A, Paasiala P (2021) Future of the industry foundation classes: towards IFC 5. In Proceedings of the Conference CIB W78(2021):11–15

    Google Scholar 

  16. Borrmann A, Beetz J, Koch C, Liebich T, Muhic S (2018) Industry foundation classes: a standardized data model for the vendor-neutral exchange of digital building models, In: Borrmann A, König M, Koch C, Beetz J (eds): Building information modeling, Springer, Cham

    Google Scholar 

  17. Brilakis I, Pan Y, Borrmann A, et al. (2020) Built environment digital twinning. In: Report of the international workshop of built environment digital twinning, Institute for Advanced Study, Technische Universität München

    Google Scholar 

  18. Buil-Aranda C, Hogan A, Umbrich J, Vandenbussche PY (2013) SPARQL web-querying infrastructure: ready for action? In: International semantic web conference, pp 277–293. Springer, Berlin

    Google Scholar 

  19. Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13(6):377–387

    Article  MATH  Google Scholar 

  20. Damesha HS (2015) Object oriented database management systems-concepts, advantages, limitations and comparative study with relational database management systems. Global J Comp Sci Technol 15(3):11–18

    Google Scholar 

  21. El-Diraby TE (2021) Can IFC mentality be the basis of digital twins? No. Keynote presentation. In: CIB-W78 conference, Luxembourg

    Google Scholar 

  22. Grieves M, Vickers J (2017) Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen J, Flumerfelt S, Alves A. (eds) Transdisciplinary perspectives on complex systems, pp 85–113. Springer, Cham. https://doi.org/10.1007/978-3-319-38756-7_4.

  23. Guo D, Onstein E, Rosa ADL (2020) An approach of automatic SPARQL generation for BIM data extraction. Appl Sci 10(24):8794

    Article  Google Scholar 

  24. Hartig O, Champin PA (2021) Metadata for RDF statements: the RDF-star approach. In: Lotico

    Google Scholar 

  25. Hofstadler C (2007) Bauablaufplanung und Logistik im Baubetrieb. Springer, Berlin

    Google Scholar 

  26. Kritzinger W, Karner M, Traar G, Henjes J, Sihn W (2018) Digital twin in manufacturing: a categorical literature review and classification. IFAC-PapersOnLine 51(11):1016–1022

    Article  Google Scholar 

  27. Ireland C, Bowers D, Newton M, Waugh K (2009) A classification of object-relational impedance mismatch. In: 2009 First international conference on advances in databases, knowledge, and data applications, pp 36–43. IEEE

    Google Scholar 

  28. Jacobsen I, Magnus C, Patrik J, Gunnar O (1992) Object oriented software engineering. Addison-Wesley ACM Press

    Google Scholar 

  29. Junghanns, M., Petermann, A., Teichmann, N., Gómez, K., & Rahm, E. (2016). Analyzing extended property graphs with Apache Flink. In Proceedings of the 1st ACM SIGMOD Workshop on Network Data Analytics (pp. 1–8)

    Google Scholar 

  30. Koch J, Lotzing G, Gomse M, Schüppstuhl T (2022) Application of multi-model databases in digital twins using the example of a quality assurance process. In: Sustainable customization: bridging smart products and manufacturing systems. CARV MCPC 2021 LNME, pp 364–371. Springer, Cham. https://doi.org/10.1007/978-3-030-90700-6_41

  31. Kent W (1983) A simple guide to five normal forms in relational database theory. Commun ACM 26:120–125

    Article  Google Scholar 

  32. Krijnen T, Beetz J (2018) A SPARQL query engine for binary-formatted IFC building models. Autom Constr 95:46–63

    Article  Google Scholar 

  33. Mafipour MS, Vilgertshofe S, Borrmann A (2022) Digital twinning of bridges from point cloud data by deep learning and parametric models, In: Proceedings of European conference on product and process modeling 2022, Trondheim, Norway

    Google Scholar 

  34. Mellor SJ, Scott K, Uhl A, Weise D (2002) Model-driven architecture. In: International conference on object-oriented information systems, pp 290–297. Springer, Berlin, Heidelberg

    Google Scholar 

  35. Pauwels P, Terkaj W (2016) EXPRESS to OWL for construction industry: towards a recommendable and usable ifcOWL ontology. Autom Constr 63:100–133

    Article  Google Scholar 

  36. Pauwels P, Roxin A (2017) SimpleBIM: from full ifcOWL graphs to simplified building graphs. In: eWork and eBusiness in architecture. Engineering and construction, pp 11–18. CRC Press

    Google Scholar 

  37. Pauwels P, McGlinn K, Törmä S, Beetz J (2018) Linked data. In: Borrmann A, König M, Koch C, Beetz J (eds) Building information modeling, pp. 181–197. Springer, Cham

    Google Scholar 

  38. Peng D, Cao L, Xu W (2011) Using JSON for data exchanging in web service applications. J Comput Inf Syst 7(16):5883–5890

    Google Scholar 

  39. Portele C (2012) OGC geography markup language (GML)–extended schemas and encoding rules. Open Geospatial Consortium Inc.

    Google Scholar 

  40. Robie J, Bartels D (1994) A comparison between relational and object oriented databases for object oriented application development. POET Software Corporation, pp 800–950

    Google Scholar 

  41. Rowley J (2007) The wisdom hierarchy: representations of the DIKW hierarchy. J Inf Commun Sci 33(2):163–180

    Article  Google Scholar 

  42. Sacks R (2016) What constitutes good production flow in construction? Constr Manag Econ 34(9):641–656

    Google Scholar 

  43. Sacks R, Brilakis I, Pikas E, Xie H, Girolami M (2020) Construction with digital twin information systems. Data-Cent Eng 1:1–26

    Google Scholar 

  44. Schlenger J, Yeung T, Vilgertshofer S, Martinez J, Sacks R, Borrmann A (2022): A Comprehensive Data Schema for Digital Twin Construction. In: 29th International workshop on intelligent computing in engineering (EG-ICE), Aarhus, Denmark

    Google Scholar 

  45. Zhang C, Beetz J, de Vries B (2018) BimSPARQL: domain-specific functional SPARQL extensions for querying RDF building data. Seman Web 9(6):829–855

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this paper has been partially funded by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 958398, “BIM2TWIN: Optimal Construction Management & Production Control”, as well as Transregio 277 “Additive Manufacturing in Construction – The Challenge of Large Scale” funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - project number 414265976 - TRR277.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to André Borrmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Borrmann, A., Schlenger, J., Bus, N., Sacks, R. (2024). AEC Digital Twin Data - Why Structure Matters. In: Skatulla, S., Beushausen, H. (eds) Advances in Information Technology in Civil and Building Engineering. ICCCBE 2022. Lecture Notes in Civil Engineering, vol 357. Springer, Cham. https://doi.org/10.1007/978-3-031-35399-4_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35399-4_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35398-7

  • Online ISBN: 978-3-031-35399-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics