Skip to main content

Deep Learning-Based Music Instrument Recognition: Exploring Learned Feature Representations

  • Conference paper
  • First Online:
Music in the AI Era (CMMR 2021)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13770 ))

Included in the following conference series:

  • 337 Accesses

Abstract

In this work, we focus on the problem of automatic instrument recognition (AIR) using supervised learning. In particular, we follow a state-of-the-art AIR approach that combines a deep convolutional neural network (CNN) architecture with an attention mechanism. This attention mechanism is conditioned on a learned input feature representation, which itself is extracted by another CNN model acting as a feature extractor. The extractor is pre-trained on a large-scale audio dataset using discriminative objectives for sound event detection. In our experiments, we show that when using log-mel spectrograms as input features instead, the performance of the CNN-based AIR algorithm decreases significantly. Hence, our results indicate that the feature representations are the main factor that affects the performance of the AIR algorithm. Furthermore, we show that various pre-training tasks affect the AIR performance in different ways for subsets of the music instrument classes.

M. Taenzer and S. I. Mimilakis—Equally contributing authors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Publicly available under https://github.com/cosmir/openmic-2018.

References

  1. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013). https://doi.org/10.1109/TPAMI.2013.50

    Article  Google Scholar 

  2. Drossos, K., Adavanne, S., Virtanen, T.: Automated audio captioning with recurrent neural networks. In: Proceedings of the IEEE Workshop on Applications of Signal Processing to Audio and Acoustics (WASPAA), New Paltz, New York, USA (2017)

    Google Scholar 

  3. Engel, J., et al.: Neural audio synthesis of musical notes with WaveNet autoencoders. arXiv preprint arXiv:1704.01279 (2017)

  4. Favory, X., Drossos, K., Virtanen, T., Serra, X.: Coala: co-aligned autoencoders for learning semantically enriched audio representations. arXiv preprint arXiv:2006.08386 (2020)

  5. Font, F., Roma, G., Serra, X.: Freesound technical demo. In: Proceedings of the 21st ACM International Conference on Multimedia, New York, NY, USA, pp. 411–412 (2013)

    Google Scholar 

  6. Gemmeke, J.F., et al.: Audio set: an ontology and human-labeled dataset for audio events. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 776–780 (2017)

    Google Scholar 

  7. Glorot, X., Bengio, Y.: Understanding the difficulty of training deep feedforward neural networks. In: Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS 2010), pp. 249–256 (2010)

    Google Scholar 

  8. Gomez, J., Abeßer, J., Cano, E.: Jazz solo instrument classification with convolutional neural networks, source separation, and transfer learning. In: Proceedings of the 19th International Society of Music Information Retrieval Conference (ISMIR), Paris, France, pp. 577–584 (2018)

    Google Scholar 

  9. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)

    MATH  Google Scholar 

  10. Gururani, S., Sharma, M., Lerch, A.: An attention mechanism for musical instrument recognition. In: Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 83–90 (2019)

    Google Scholar 

  11. Han, Y., Kim, J., Lee, K.: Deep convolutional neural networks for predominant instrument recognition in polyphonic music. IEEE/ACM Trans. Audio Speech Lang. Process. (TASLP) 25(1), 208–221 (2017)

    Article  Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  13. Hershey, S., et al.: CNN architectures for large-scale audio classification. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, pp. 131–135 (2017)

    Google Scholar 

  14. Humphrey, E.J., Durand, S., Mcfee, B.: OpenMIC-2018: an open data-set for multiple instrument recognition. In: Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, pp. 438–444 (2018)

    Google Scholar 

  15. Hung, Y.N., Yang, Y.H.: Frame-level instrument recognition by timbre and pitch. In: Proceedings of the 19th International Society for Music Information Retrieval Conference (ISMIR), Paris, France, pp. 135–142 (2018)

    Google Scholar 

  16. Jansen, A., Gemmeke, J.F., Ellis, D.P.W., Liu, X., Lawrence, W., Freedman, D.: Large-scale audio event discovery in one million YouTube videos. In: Proceedings of the International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 786–790 (2017). https://doi.org/10.1109/ICASSP.2017.7952263

  17. Kim, D., Sung, T., Cho, S., Lee, G., Sohn, C.: A single predominant instrument recognition of polyphonic music using CNN-based timbre analysis. Int. J. Eng. Technol. (UAE) 7, 590–593 (2018)

    Article  Google Scholar 

  18. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the 3rd International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  19. Li, P., Qian, J., Wang, T.: Automatic instrument recognition in polyphonic music using convolutional neural networks. arXiv preprint arXiv:1511.05520 (2015)

  20. Li, X., Wang, K., Soraghan, J., Ren, J.: Fusion of Hilbert-Huang transform and deep convolutional neural network for predominant musical instruments recognition. In: Romero, J., Ekárt, A., Martins, T., Correia, J. (eds.) EvoMUSART 2020. LNCS, vol. 12103, pp. 80–89. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43859-3_6

    Chapter  Google Scholar 

  21. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: Proceedings of the 32nd International Conference on Machine Learning (ICML), Lille, France, vol. 37, pp. 97–105 (2015)

    Google Scholar 

  22. Mimilakis, S.I., Weiss, C., Arifi-Müller, V., Abeßer, J., Müller, M.: Cross-version singing voice detection in opera recordings: challenges for supervised learning. In: Cellier, P., Driessens, K. (eds.) ECML PKDD 2019. CCIS, vol. 1168, pp. 429–436. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43887-6_35

    Chapter  Google Scholar 

  23. Müller, M.: Information Retrieval for Music and Motion. Springer, Heidelberg (2007)

    Book  Google Scholar 

  24. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML), pp. 807–814. Omnipress, Madison (2010)

    Google Scholar 

  25. Oquab, M., Bottou, L., Laptev, I., Sivic, J.: Learning and transferring mid-level image representations using convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1717–1724 (2014)

    Google Scholar 

  26. Park, T., Lee, T.: Musical instrument sound classification with deep convolutional neural network using feature fusion approach. arXiv preprint arXiv:1512.07370 (2015)

  27. Pennington, J., Socher, R., Manning, C.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  28. Rafii, Z., Liutkus, A., Stöter, F.R., Mimilakis, S.I., FitzGerald, D., Pardo, B.: An overview of lead and accompaniment separation in music. IEEE/ACM Trans. Audio Speech Lang. Process. 26(8), 1307–1335 (2018)

    Article  Google Scholar 

  29. Scheirer, E.D.: Music-listening systems. Ph.D. thesis, Massachusetts Institute of Technology (2000)

    Google Scholar 

  30. Smaragdis, P.: Redundancy reduction for computational audition, a unifying approach. Ph.D. thesis, Massachusetts Institute of Technology (2001)

    Google Scholar 

  31. Taenzer, M., Abeßer, J., Mimilakis, S.I., Weiß, C., Müller, M., Lukashevich, H.: Investigating CNN-based instrument family recognition for western classical music recordings. In: Proceedings of the 20th International Society for Music Information Retrieval Conference (ISMIR), Delft, The Netherlands, pp. 612–619 (2019)

    Google Scholar 

  32. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) Proceedings of the 30th International Conference Advances in Neural Information Processing Systems (NeurIPS), pp. 5998–6008. Curran Associates, Inc. (2017)

    Google Scholar 

  33. Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing robust features with denoising autoencoders. In: Proceedings of the 25th International Conference on Machine Learning (ICML), Helsinki, Finland, pp. 1096–1103. ACM (2008)

    Google Scholar 

  34. Watcharasupat, K., Gururani, S., Lerch, A.: Visual attention for musical instrument recognition. arXiv preprint arXiv:2006.09640 (2020)

  35. Wu, Y., He, K.: Group normalization. arXiv preprint arXiv:1803.08494 (2018)

Download references

Acknowledgments

This work has been supported by the German Research Foundation (AB 675/2-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Taenzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taenzer, M., Mimilakis, S.I., Abeßer, J. (2023). Deep Learning-Based Music Instrument Recognition: Exploring Learned Feature Representations. In: Aramaki, M., Hirata, K., Kitahara, T., Kronland-Martinet, R., Ystad, S. (eds) Music in the AI Era. CMMR 2021. Lecture Notes in Computer Science, vol 13770 . Springer, Cham. https://doi.org/10.1007/978-3-031-35382-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35382-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35381-9

  • Online ISBN: 978-3-031-35382-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics