Skip to main content

The Effect of Temporal Variations in Myocardial Perfusion on Diffusion Tensor Measurements

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

The aim of this study is to investigate the impact of velocity fluctuations on the perfusion signal and tensor parameters in diffusion tensor cardiovascular magnetic resonance (DT-CMR) using numerical simulations. A sinusoidal velocity function with increasing amplitude and frequency and a physiological velocity function have been considered. Both velocity functions have been analyzed using two mean inter-capillary velocity distributions with varying levels of dispersion. The results of the perfusion simulations, along with previous diffusion results, have been utilized to analyse the impact of perfusion on the diffusion tensor. The findings indicated that MCSE effectively compensated the rapid velocity changes considered in the study, while PGSE was sensitive to temporal changes in velocity. STEAM was found to be more sensitive to variations in the mean-intercapillary dispersion rather than to temporal velocity fluctuations. These simulation results provide insights regarding the potential of dispersed perfusion velocity fluctuations to affect the DT-CMR signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdullah, O.M., Gomez, A.D., Merchant, S., Heidinger, M., Poelzing, S., Hsu, E.W.: Orientation dependence of microcirculation-induced diffusion signal in anisotropic tissues. Magn. Reson. Med. 76(4) (2016). https://doi.org/10.1002/mrm.25980

  2. Alemany, I., et al.: Realistic numerical simulations of diffusion tensor CMR: the effects of perfusion and membrane permeability (2023, under review)

    Google Scholar 

  3. Alemany, I., Rose, J.N., Garnier-Brun, J., Scott, A.D., Doorly, D.J.: Random walk diffusion simulations in semi-permeable layered media with varying diffusivity. Sci. Rep. 12(1), 10759 (2022). https://doi.org/10.1038/s41598-022-14541-y

    Article  Google Scholar 

  4. Bao, H., Li, R., He, M., Kang, D., Zhao, L.: DTI study on brain structure and cognitive function in patients with chronic mountain sickness. Sci. Rep. 9(1) (2019). https://doi.org/10.1038/s41598-019-55498-9

  5. Barclay, K.D., Klassen, G.A., Young, C.: A method for detecting chaos in canine myocardial microcirculatory red cell flux. Microcirculation 7(5) (2000). https://doi.org/10.1111/j.1549-8719.2000.tb00132.x

  6. Callot, V., Bennett, E., Decking, U.K., Balaban, R.S., Wen, H.: In vivo study of microcirculation in canine myocardium using the IVIM method. Magn. Reson. Med. 50(3) (2003). https://doi.org/10.1002/mrm.10568

  7. Fibich, G., Lanir, Y., Liron, N.: Mathematical model of blood flow in a coronary capillary. Am. J. Physiol. Heart Circulatory Physiol. 265(5 34-5) (1993). https://doi.org/10.1152/ajpheart.1993.265.5.h1829

  8. Poole, D.C., Mathieu-Costello, O.: Analysis of capillary geometry in rat subepicardium and subendocardium. Am. J. Physiol. Heart Circulatory Physiol. 259(1 28-1) (1990). https://doi.org/10.1152/ajpheart.1990.259.1.h204

  9. Rose, J.N., Nielles-Vallespin, S., Ferreira, P.F., Firmin, D.N., Scott, A.D., Doorly, D.J.: Novel insights into in-vivo diffusion tensor cardiovascular magnetic resonance using computational modeling and a histology-based virtual microstructure. Magn. Reson. Med. 81(4) (2019). https://doi.org/10.1002/mrm.27561

  10. Seland, J.G., Bruvold, M., Brurok, H., Jynge, P., Krane, J.: Analyzing equilibrium water exchange between myocardial tissue compartments using dynamical two-dimensional correlation experiments combined with manganese-enhanced relaxography. Magn. Reson. Med. 58(4) (2007). https://doi.org/10.1002/mrm.21323

  11. Spinner, G.R., Stoeck, C.T., Mathez, L., von Deuster, C., Federau, C., Kozerke, S.: On probing intravoxel incoherent motion in the heart-spin-echo versus stimulated-echo DWI. Magn. Reson. Med. 82(3) (2019). https://doi.org/10.1002/mrm.27777

  12. Stoeck, C.T., Von Deuster, C., GeneT, M., Atkinson, D., Kozerke, S.: Second-order motion-compensated spin echo diffusion tensor imaging of the human heart. Magn. Reson. Med. 75(4) (2016). https://doi.org/10.1002/mrm.25784

Download references

Acknowledgments

This work was funded by British Heart Foundation Grants RE/13/4/30184 and RG/19/1/34160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Alemany .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alemany, I., Ferreira, P.F., Nielles-Vallespin, S., Scott, A.D., Doorly, D.J. (2023). The Effect of Temporal Variations in Myocardial Perfusion on Diffusion Tensor Measurements. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics