Skip to main content

Shape-Guided In-Silico Characterization of 3D Fetal Arch Hemodynamics in Suspected Coarctation of the Aorta

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

Coarctation of the aorta (CoA) is a prevalent congenital heart defect. Its prenatal diagnosis is challenging, with high false positive rates. The exact cause of CoA is yet not fully understood. Recent research has provided novel insights into the anatomical determinants of CoA based on the in-utero arch anatomy. However, it is also recognized that the pathophysiology of CoA is also intrinsically linked to abnormal flow dynamics. To investigate the interplay between arch anatomy and flow, Computational Fluid Dynamics (CFD) analysis was performed in two fetal cases - a true and a false positive CoA. These anatomies were selected from a population of 108 fetuses with suspected CoA based on a statistical shape analysis score and clinical outcomes. A simplified 0D model of the fetal circulation informed by 2D PC-MRI was used to find patient-specific boundary conditions for an open-loop 3D-0D CFD model. Results from the 3D CFD models were validated against clinical imaging data for each case and provided initial evidence of hemodynamic differences between false positive and true positive CoA cases. These findings demonstrate the potential of using the SSM-guided CFD analysis on a larger cohort of representative cases to better understand the disease mechanisms in CoA and improve its diagnosis before birth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alimohammadi, M., Agu, O., Balabani, S., Díaz-Zuccarini, V.: Development of a patient-specific simulation tool to analyse aortic dissections: assessment of mixed patient-specific flow and pressure boundary conditions. Med. Eng. Phys. 36(3), 275–284 (2014). https://doi.org/10.1016/j.medengphy.2013.11.003

    Article  Google Scholar 

  2. Bidhult, S., et al.: Independent validation of metric optimized gating for fetal cardiovascular phase-contrast flow imaging. Magn. Reson. Med. 81(1), 495–503 (2019). https://doi.org/10.1002/mrm.27392

    Article  Google Scholar 

  3. Chen, Z., Liu, Z., Du, M., Wang, Z.: Artificial intelligence in obstetric ultrasound: an update and future applications. Front. Med. 8, 1–9 (2021). https://doi.org/10.3389/fmed.2021.733468

    Article  Google Scholar 

  4. Chen, Z., Zhou, Y., Wang, J., Liu, X., Ge, S., He, Y.: Modeling of coarctation of aorta in human fetuses using 3D/4D fetal echocardiography and computational fluid dynamics. Echocardiography 34(12), 1858–1866 (2017). https://doi.org/10.1111/echo.13644

    Article  Google Scholar 

  5. Familiari, A., et al.: Risk factors for coarctation of the aorta on prenatal ultrasound: a systematic review and meta-analysis. Circulation 135(8), 772–785 (2017). https://doi.org/10.1161/CIRCULATIONAHA.116.024068

    Article  Google Scholar 

  6. Garcia-Canadilla, P., et al.: A computational model of the fetal circulation to quantify blood redistribution in intrauterine growth restriction. PLoS Comput. Biol. 10(6), 9–11 (2014). https://doi.org/10.1371/journal.pcbi.1003667

    Article  Google Scholar 

  7. Hahn, C., Schwartz, M.A.: Mechanotransduction in vascular physiology and atherogenesis. Nat. Rev. Mol. Cell Biol. 10(1), 53–62 (2009). https://doi.org/10.1038/nrm2596

    Article  Google Scholar 

  8. Hermida, U., et al.: Learning the hidden signature of fetal arch anatomy: a three-dimensional shape analysis in suspected coarctation of the aorta. J. Cardiovasc. Transl. Res. (2022). https://doi.org/10.1007/s12265-022-10335-9

    Article  Google Scholar 

  9. Hutchins, G.M.: Coarctation of the aorta explained as a branch-point of the ductus arteriosus. Am. J. Pathol. 63(2), 203–214 (1971)

    Google Scholar 

  10. Iwaki, R., et al.: Evaluation of ductal tissue in coarctation of the aorta using X-ray phase-contrast tomography. Pediatr. Cardiol. 42(3), 654–661 (2021). https://doi.org/10.1007/s00246-020-02526-5

    Article  Google Scholar 

  11. Jansz, M.S., et al.: Metric optimized gating for fetal cardiac MRI. Magn. Reson. Med. 64(5), 1304–1314 (2010). https://doi.org/10.1002/mrm.22542

    Article  Google Scholar 

  12. Lloyd, D.F., et al.: Three-dimensional visualisation of the fetal heart using prenatal MRI with motion-corrected slice-volume registration: a prospective, single-centre cohort study. Lancet 393(10181), 1619–1627 (2019). https://doi.org/10.1016/S0140-6736(18)32490-5

    Article  Google Scholar 

  13. Lloyd, D.F., Rutherford, M.A., Simpson, J.M., Razavi, R.: The neurodevelopmental implications of hypoplastic left heart syndrome in the fetus. Cardiol. Young 27(2), 217–223 (2017). https://doi.org/10.1017/S1047951116001645

    Article  Google Scholar 

  14. Morris, P.D., et al.: Computational fluid dynamics modelling in cardiovascular medicine. Heart 102(1), 18–28 (2016). https://doi.org/10.1136/heartjnl-2015-308044

    Article  Google Scholar 

  15. Roberts, T.A., et al.: Fetal whole heart blood flow imaging using 4D cine MRI. Nat. Commun. 11(1), 1–13 (2020). https://doi.org/10.1038/s41467-020-18790-1

    Article  Google Scholar 

  16. Roux, E., Bougaran, P., Dufourcq, P., Couffinhal, T.: Fluid shear stress sensing by the endothelial layer. Front. Physiol. 11(July), 1–17 (2020). https://doi.org/10.3389/fphys.2020.00861

    Article  Google Scholar 

  17. Rudolph, A.M., Heymann, M.A., Spitznas, U.: Hemodynamic considerations in the development of narrowing of the aorta. Am. J. Cardiol. 30(5), 514–525 (1972). https://doi.org/10.1016/0002-9149(72)90042-2

    Article  Google Scholar 

  18. Salman, H.E., Yalcin, H.C.: Computational modeling of blood flow hemodynamics for biomechanical investigation of cardiac development and disease. J. Cardiovasc. Dev. Dis. 8(2), 1–27 (2021). https://doi.org/10.3390/JCDD8020014

    Article  Google Scholar 

  19. Schulz, A., et al.: Structured analysis of the impact of fetal motion on phase-contrast MRI flow measurements with metric optimized gating. Sci. Rep. 12(1), 1–11 (2022). https://doi.org/10.1038/s41598-022-09327-1

    Article  MathSciNet  Google Scholar 

  20. Struijk, P.C., et al.: Blood pressure estimation in the human fetal descending aorta. Ultrasound Obstet. Gynecol. 32(5), 673–681 (2008). https://doi.org/10.1002/uog.6137

    Article  Google Scholar 

  21. Van Den Wijngaard, J.P., Westerhof, B.E., Faber, D.J., Ramsay, M.M., Westerhof, N., Van Gemert, M.J.: Abnormal arterial flows by a distributed model of the fetal circulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291(5), 1222–1233 (2006). https://doi.org/10.1152/ajpregu.00212.2006

    Article  Google Scholar 

  22. Vigneswaran, T.V., Zidere, V., Chivers, S., Charakida, M., Akolekar, R., Simpson, J.M.: Impact of prospective measurement of outflow tracts in prediction of coarctation of the aorta. Ultrasound Obstet. Gynecol. 56(6), 850–856 (2020). https://doi.org/10.1002/uog.21957

    Article  Google Scholar 

  23. Yokoyama, U., Ichikawa, Y., Minamisawa, S., Ishikawa, Y.: Pathology and molecular mechanisms of coarctation of the aorta and its association with the ductus arteriosus. J. Physiol. Sci. 67(2), 259–270 (2016). https://doi.org/10.1007/s12576-016-0512-x

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uxio Hermida .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hermida, U. et al. (2023). Shape-Guided In-Silico Characterization of 3D Fetal Arch Hemodynamics in Suspected Coarctation of the Aorta. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics