Skip to main content

Automated Generation of Purkinje Networks in the Human Heart Considering the Anatomical Variability

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2023)

Abstract

The Purkinje networks play a crucial role in the coordinated activation of the ventricular myocardium. The Purkinje networks grow in the right and left ventricles via the septum towards the apex and then upwards to the base with a different density. However, the inter-patient variability affects the growing pattern. In this study, we aimed to automatically create different Purkinje networks and evaluate the variability of their growth. We developed an algorithm that automatically generated ten different Purkinje network realizations in ten different ventricular geometries, obtaining 100 different Purkinje subendocardial networks. The growth was affected mainly by the size of the ventricles. Bigger ventricles (volume > 200 cm3) were highly populated with 1099 ± 43 Purkinje-Myocyte junctions compared to smaller ventricles (volume < 100 cm3) with 746 ± 38 Purkinje-Myocyte junctions. The Purkinje network activation sequence was also correctly verified by activating a biventricular geometry. In conclusion, we provide an algorithm that automatically produces biventricular Purkinje networks for any given ventricular geometry with a physiological activation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. De Almeida, M.C., Lopes, F., Fontes, P., Barra, F., Guimaraes, R., Vilhena, V.: Ungulates heart model: a study of the Purkinje network using India ink injection, transparent specimens and computer tomography. Anat. Sci. Int. 90(4), 240–250 (2014). https://doi.org/10.1007/s12565-014-0255-9

    Article  Google Scholar 

  2. Atkinson, A., et al.: Anatomical and molecular mapping of the left and right ventricular His-Purkinje conduction networks. J. Mol. Cellular Cardiol. 51, 689–701 (2011). https://doi.org/10.1016/j.yjmcc.2011.05.020

    Article  Google Scholar 

  3. Bayer, J.D., Sobota, V., Moreno, A., Jaïs, P., Vigmond, E.J.: The Purkinje network plays a major role in low-energy ventricular defibrillation. Comput. Biol. Med. 141 (2022). https://doi.org/10.1016/j.compbiomed.2021.105133

  4. Behradfar, E., Nygren, A., Vigmond, E.J.: The role of Purkinje-myocardial coupling during ventricular arrhythmia: a modeling study. PLoS ONE 9 (2014). https://doi.org/10.1371/journal.pone.0088000

  5. Bordas, R., et al.: Integrated approach for the study of anatomical variability in the cardiac Purkinje system from high resolution MRI to electrophysiology simulation. IEEE (2010). https://doi.org/10.1109/IEMBS.2010.5625979

  6. Cardone-Noott, L., Bueno-Orovio, A., Mincholé, A., Zemzemi, N., Rodriguez, B.: Human ventricular activation sequence and the simulation of the electrocardiographic QRS complex and its variability in healthy and intraventricular block conditions. Europace: European Pacing, Arrhythmias, and Cardiac Electrophysiology: Journal of the Working Groups on Cardiac Pacing, Arrhythmias, and Cardiac Cellular Electrophysiology of the European Society of Cardiology 18, iv4–iv15 (2016). https://doi.org/10.1093/europace/euw346

  7. Carpio, E.F., et al.: Optimization of lead placement in the right ventricle during cardiac resynchronization therapy. A simulation study. Front. Physiol. 10, 74–74 (2019). https://doi.org/10.3389/FPHYS.2019.00074

    Article  Google Scholar 

  8. Costabal, F.S., Hurtado, D.E., Kuhl, E.: Generating Purkinje networks in the human heart. J. Biomech. 49, 2455–2465 (2016). https://doi.org/10.1016/j.jbiomech.2015.12.025

    Article  Google Scholar 

  9. Durrer, D., van Dam, R.T., Freud, G.E., Janse, M.J., Meijler, F.L., Arzbaecher, R.C.: Total excitation of the isolated human heart. Circulation 41, 899–912 (1970)

    Article  Google Scholar 

  10. Gerach, T., et al.: Electro-mechanical whole-heart digital twins: a fully coupled multi-physics approach. Mathematics 9 (2021). https://doi.org/10.3390/math9111247

  11. Li, Y.G., Grönefeld, G., Israel, C., Bogun, F., Hohnloser, S.H.: Bundle branch reentrant tachycardia in patients with apparent normal His-Purkinje conduction: the role of functional conduction impairment. J. Cardiovasc. Electrophysiol. 13, 1233–1239 (2002). https://doi.org/10.1046/j.1540-8167.2002.01233.x

    Article  Google Scholar 

  12. Miralles, F.B., Garcia, I., Sebastian, R.: Inverse Estimation of the Cardiac Purkinje System from Electroanatomical Maps. Ph.D. thesis, Universitat de València (2019)

    Google Scholar 

  13. Morley, G.E., et al.: Reduced intercellular coupling leads to paradoxical propagation across the Purkinje-ventricular junction and aberrant myocardial activation. Proc. Natl. Acad. Sci. (2005). https://doi.org/10.1073/pnas.0500881102

    Article  Google Scholar 

  14. Plank, G., et al.: The openCARP simulation environment for cardiac electrophysiology. Comput. Methods Programs Biomed. 208, 106223 (2021). https://doi.org/10.1016/j.cmpb.2021.106223

    Article  Google Scholar 

  15. Purkinje, J.: Mikroskopisch-neurologische beobachtungen. Arch. Anat. Physiol. Wiss. Med. 12, 281–295 (1845)

    Google Scholar 

  16. Romero, D.: Characterization and Modelling of the Purkinje System for Biophysical Simulations. Ph.D. thesis, Universitat Pompeu Fabra (2016)

    Google Scholar 

  17. Schuler, S., Loewe, A.: Biventricular statistical shape model of the human heart adapted for computer simulations. Zenodo (2021)

    Google Scholar 

  18. Schuler, S., Pilia, N., Potyagaylo, D., Loewe, A.: Cobiveco: consistent biventricular coordinates for precise and intuitive description of position in the heart - with matlab implementation. Med. Image Anal. 74, 102247 (2021). https://doi.org/10.1016/j.media.2021.102247

    Article  Google Scholar 

  19. Sebastian, R., Zimmerman, V., Romero, D., Sanchez-Quintana, D., Frangi, A.F.: Characterization and modeling of the peripheral cardiac conduction system. IEEE Trans. Med. Imaging 32, 45–55 (2013). https://doi.org/10.1109/TMI.2012.2221474

    Article  Google Scholar 

  20. Stewart, P., Aslanidi, O.V., Noble, D., Noble, P.J., Boyett, M.R., Zhang, H.: Mathematical models of the electrical action potential of Purkinje fibre cells. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 367, 2225–2255 (2009). https://doi.org/10.1098/rsta.2008.0283

    Article  MathSciNet  MATH  Google Scholar 

  21. Tomek, J., et al.: Development, calibration, and validation of a novel human ventricular myocyte model in health, disease, and drug block. eLife 8, e48890 (2019). https://doi.org/10.7554/eLife.48890

  22. Tusscher, K.H., Panfilov, A.V.: Modelling of the ventricular conduction system. Progress Biophys. Mol. Biol. 96, 152–170 (2008). https://doi.org/10.1016/j.pbiomolbio.2007.07.026

    Article  Google Scholar 

  23. Vigmond, E.J., Stuyvers, B.D.: Modeling our understanding of the His-Purkinje system. Progress Biophys. Mol. Biol. 120, 179–188 (2016). https://doi.org/10.1016/j.pbiomolbio.2015.12.013

    Article  Google Scholar 

Download references

Acknowledgements

This project is part of the grant I+D+i PLEC2021-007614, funded by MCIN/AEI/10.13039/501100011033 and by the “European Union NextGenerationEU/PRTR”. We thank Inés Llorente for adapting the biventricular meshes to simulate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Correas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Correas, M., Guillem, M.S., Sánchez, J. (2023). Automated Generation of Purkinje Networks in the Human Heart Considering the Anatomical Variability. In: Bernard, O., Clarysse, P., Duchateau, N., Ohayon, J., Viallon, M. (eds) Functional Imaging and Modeling of the Heart. FIMH 2023. Lecture Notes in Computer Science, vol 13958. Springer, Cham. https://doi.org/10.1007/978-3-031-35302-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35302-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35301-7

  • Online ISBN: 978-3-031-35302-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics