Skip to main content

MIRA: A Low-Noise Pixelated ASIC for Photon Counting Applications

  • Chapter
  • First Online:
X-ray Photon Processing Detectors

Abstract

Considering the future long-term space mission programs, many scientific targets will require a payload that includes an UV imager spectrograph. For instance, future missions on gas or ice giant planets will require imaging spectroscopy for a comprehensive study of the aurora footprints and polar magnetosphere as well as the characteristics of the upper atmosphere or exosphere of their satellites

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arridge, C. S., et al. (2012). Uranus Pathfinder: Exploring the origins and evolution of Ice Giant planets. Experimental Astronomy, 33(2), 753–791.

    Article  Google Scholar 

  2. Hofstadter, M., et al. (2017) Ice giants pre-decadal survey mission study report. JPL D-100520.

    Google Scholar 

  3. Ghail, R. C., et al. (2012). EnVision: Taking the pulse of our twin planet. Experimental Astronomy, 33(2), 337–363.

    Article  Google Scholar 

  4. Pelizzo, M. G., et al. (2021). The PLanetary extreme Ultraviolet Spectrometer Project. In Astronomical optics: Design, manufacture, and test of space and ground systems III (vol. 11820). Bellingham: SPIE.

    Google Scholar 

  5. Fabbrica, E., et al. (2022). Design of MIRA, a low-noise pixelated ASIC for the readout of micro-channel plates. Journal of Instrumentation, 17(1), C01047.

    Article  Google Scholar 

  6. Fiorini, C., & Porro, M. (2004). Integrated RC cell for time-invariant shaping amplifiers. IEEE Transactions on Nuclear Science, 51(5), 1953–1960. https://doi.org/10.1109/TNS.2004.835578

    Article  Google Scholar 

  7. Krummenacher, F. (1991). Pixel detectors with local intelligence: An IC designer point of view. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 305(3), 527–532. https://doi.org/10.1016/0168-9002(91)90152-G

    Article  Google Scholar 

  8. Ballabriga, R., et al. (2007). The Medipix3 prototype, a pixel readout chip working in single photon counting mode with improved spectrometric performance. IEEE Transactions on Nuclear Science, 54(5), 1824–1829.

    Article  Google Scholar 

  9. Cusick, T. W., & Stanica, P. (2017) Cryptographic Boolean functions and applications. Cambridge: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edoardo Fabbrica .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fabbrica, E., Carminati, M., Fiorini, C. (2024). MIRA: A Low-Noise Pixelated ASIC for Photon Counting Applications. In: Hansson, C., Iniewski, K.(. (eds) X-ray Photon Processing Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-35241-6_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35241-6_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35240-9

  • Online ISBN: 978-3-031-35241-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics