Skip to main content

Germanium Detectors for MeV Gamma-Ray Astrophysics with the Compton Spectrometer and Imager

  • Chapter
  • First Online:
X-ray Photon Processing Detectors

Abstract

Germanium semiconductor detectors—particularly high-purity germanium (HPGe) detectors—have been the technology of choice for decades for applications that require excellent energy resolution and good stopping power for MeV gamma rays. Modern advances in contact fabrication enable the fine segmentation of large-volume HPGe detectors to locate individual energy depositions in 3D, not just 2D, which makes possible the accurate reconstruction of Compton-scatter tracks. We describe the state-of-the-art HPGe detectors on the Compton Spectrometer and Imager (COSI), a telescope designed to study MeV gamma rays from astrophysical sources in the Milky Way Galaxy and beyond. These detectors require careful calibration to achieve the simultaneous objectives of spectroscopy with high spectral resolution, imaging of point and diffuse sources, and polarimetry of transient and persistent sources. COSI, previously a successful balloon-borne instrument, is now a funded NASA Small Explorer space mission, slated for launch in 2027 (NASA press release: https://www.nasa.gov/press-release/nasa-selects-gamma-ray-telescope-to-chart-milky-way-evolution).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This section draws heavily from the publication [20]: Beechert, Lazar, et al., Calibrations of the Compton Spectrometer and Imager, Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Volume 1031, 2022, 166510, ISSN 0168-9002, https://doi.org/10.1016/j.nima.2022.166510.

References

  1. McEnery, J., & Amego Team. (2020). All sky medium energy gamma-ray Observatory (AMEGO): Exploring the extreme multimessenger universe. American Astronomical Society Meeting Abstracts # 235. vol. 235.

    Google Scholar 

  2. Siegert, T., et al. (2022). Telescope concepts in gamma-ray astronomy. arXiv:2207.02248. https://arxiv.org/abs/2207.02248

  3. Kierans, C. (2018). Detection of the 511 keV positron annihilation line with the compton spectrometer and imager. Available from Dissertations & Theses at University of California; ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. https://www.proquest.com/dissertations-theses/detection-511-kev-positron-annihilation-line-with/docview/2135808024/se-2?accountid=14496

  4. Berger, M. J., et al. (2010). NIST standard reference database 8 (XGAM), NIST, PML, Radiation Physics Division, NBSIR 87-3597. https://dx.doi.org/10.18434/T48G6X

  5. Croft, S., & Bond, D. S. (1991). A determination of the Fano factor for germanium at 77.4 K from measurements of the energy resolution of a 113 cm3 HPGe gamma-ray spectrometer taken over the energy range from 14 to 6129 keV. International Journal of Radiation Applications and Instrumentation. Part A. Applied Radiation and Isotopes, 42(11), 1009–1014.

    Article  Google Scholar 

  6. Knoll, G. F. (2010). Radiation detection and measurement. Hoboken: Wiley.

    Google Scholar 

  7. Lin, R. P., et al. (2002). The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Solar Physics, 210, 3–32. https://doi.org/10.1023/A:1022428818870

    Article  Google Scholar 

  8. Vedrenne, G., et al. (2003). SPI: The spectrometer aboard INTEGRAL. Astronomy & Astrophysics, 411(1), L63–L70.

    Article  Google Scholar 

  9. Tomsick, J. A., Lowell, A., Lazar, H., Sleator, C., & Zoglauer, A. (2022). Soft gamma-ray polarimetry with COSI using maximum likelihood analysis. arXiv:2204.00027

    Google Scholar 

  10. Klein, O., & Nishina, Y. (1929). Über die Streuung von Strahlung durch freie Elektronen nach der neuen relativistischen Quantendynamik von Dirac. Zeitschrift für Physik, 52, 853–868. https://doi.org/10.1007/BF01366453

    Article  MATH  Google Scholar 

  11. Boggs, S. E., & Jean, P. (2000). Event reconstruction in high resolution Compton telescopes. Astronomy and Astrophysics Supplement Series, 145(2), 311–321.

    Article  Google Scholar 

  12. Zoglauer, A. (2005). First light for the next generation of compton and pair telescopes. Technische Universität München. https://mediatum.ub.tum.de/node?id=603105

    Google Scholar 

  13. Zoglauer, A., et al. (2007). Application of neural networks to the identification of the compton interaction sequence in compton imagers. In G. X. Ritter, M. S. Schmalz, J. Barrera, & J. T. Astola (Eds.), Proceedings of SPIE: Mathematics of Data/Image Pattern Recognition, Compression, Coding, and Encryption X, with Applications (vol. 6700, pp. 67000I–1–67000I–12)

    Google Scholar 

  14. Zoglauer, A., et al. (2021). COSI: From calibrations and observations to all-sky images. arXiv:2102.13158. https://arxiv.org/abs/2102.13158

  15. Schonfelder, V., et al. (1993). Instrument description and performance of the imaging gamma-ray telescope COMPTEL aboard the compton gamma-ray observatory. Astrophysical Journal Supplement Series, 86, 657–692.

    Article  Google Scholar 

  16. Kierans, C., et al. (2022). Compton telescopes for gamma-ray astrophysics. arXiv:2208.07819

    Google Scholar 

  17. Kierans, C., et al. (2017). The 2016 super pressure balloon flight of the compton spectrometer and imager. arXiv:1701.05558. https://ui.adsabs.harvard.edu/abs/2017arXiv170105558K

  18. Tomsick, J., et al. (2019). The compton spectrometer and imager, Astro2020: Decadal survey on astronomy and astrophysics, APC white papers, no. 98; Bulletin of the American Astronomical Society, vol. 51, Issue 7, id. 98. arXiv:1908.04334.

    Google Scholar 

  19. Sleator, C., et al. (2019). Benchmarking simulations of the compton spectrometer and imager with calibrations. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 946, 162643, ISSN 0168-9002. https://doi.org/10.1016/j.nima.2019.162643

    Article  Google Scholar 

  20. Beechert, J., et al. (2022). Calibrations of the compton spectrometer and imager. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 1031 (2022). https://doi.org/10.1016/j.nima.2022.166510

  21. Amman, M. (2020). High purity germanium based radiation detectors with segmented amorphous semiconductor electrical contacts: Fabrication procedures. arXiv:2006.05471.

    Google Scholar 

  22. Phlips, B. F., et al. (2004). Development and performance of large fine-pitch germanium strip detectors. In IEEE Symposium Conference Record Nuclear Science (vol. 4). Piscataway: IEEE. https://doi.org/10.1109/NSSMIC.2004.1462679

  23. Bandstra, M. S. (2010). Observation of the crab nebula in soft gamma rays with the nuclear compton telescope. Dissertations & Theses at University of California; ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. https://www.proquest.com/dissertations-theses/observation-crab-nebula-soft-gamma-rays-with/docview/861483974/se-2?accountid=14496

  24. CryoTel Cryocoolers CryoTel CT. AMETEK. https://www.sunpowerinc.com/products/stirling-cryocoolers/cryotel-cryocoolers/ct

  25. Mitra, P., et al. (2016). Application of spectrum shifting methodology to restore NaI (Tl)-recorded gamma spectra, shifted due to temperature variations in the environment. Applied Radiation and Isotopes, 107, 133–137.

    Article  Google Scholar 

  26. Sleator, C. (2019). Measuring the polarization of compact objects with the compton spectrometer and imager. Dissertations & Theses at University of California; ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/2313733159?pq-origsite=gscholar&fromopenview=true

  27. Bowen, J. D., et al. (2007). Depth dependent background measurements with NCT. In IEEE Nuclear Science Symposium Conference Record (vol. 1). Piscataway: IEEE (2007). https://doi.org/10.1109/NSSMIC.2007.4436364

    Google Scholar 

  28. Lowell, A., et al. (2016). Positional calibrations of the germanium double-sided strip detectors for the Compton spectrometer and imager. In High energy, optical, and infrared detectors for astronomy VII (vol. 9915). Bellingham: SPIE. https://doi.org/10.1117/12.2233145

  29. Lowell, A. (2017). Polarimetric studies of the long duration gamma-ray burst GRB 160530A with the compton spectrometer and imager. Dissertations & Theses at University of California; ProQuest Dissertations & Theses A&I; ProQuest Dissertations & Theses Global. https://www.proquest.com/docview/2031543342?pq-origsite=gscholar&fromopenview=true

  30. Shockley, W. (1938). Currents to conductors induced by a moving point charge. Journal of Applied Physics, 9(10), 635–636.

    Article  Google Scholar 

  31. Kierans, C., et al. (2016). The 2016 super pressure balloon flight of the compton spectrometer and imager. In 11th INTEGRAL Conference Gamma-Ray Astrophysics in Multi-Wavelength Perspective. SAO/NASA Astrophysics Data System. https://ui.adsabs.harvard.edu/abs/2016int..workE..75K

  32. Kierans, C., et al. (2020). Detection of the 511 keV Galactic positron annihilation line with COSI. The Astrophysical Journal, 895 44.

    Article  Google Scholar 

  33. Siegert, T., et al. (2020). Imaging the 511 keV positron annihilation sky with COSI. The Astrophysical Journal, 897, 45.

    Article  Google Scholar 

  34. Beechert, J., et al. (2022). Measurement of galactic 26Al with the compton spectrometer and imager. The Astrophysical Journal, 928 119.

    Article  Google Scholar 

  35. Lowell, A., et al. (2017). Polarimetric analysis of the long duration gamma-ray burst GRB 160530A with the balloon borne compton spectrometer and imager. The Astrophysical Journal, 848, 119.

    Article  Google Scholar 

  36. Johnson, W. N., et al. (1972). The spectrum of low-energy gamma radiation from the galactic-center region. The Astrophysical Journal, 172, L1.

    Article  Google Scholar 

  37. Leventhal, M., et al. (1978). Detection of 511 keV positron annihilation radiation from the galactic center direction. The Astrophysical Journal, 225, L11.

    Article  Google Scholar 

  38. Jean, P., et al. (2006). Spectral analysis of the Galactic e+ e-annihilation emission. Astronomy & Astrophysics, 445, 579.

    Article  Google Scholar 

  39. Weidenspointner, G., et al. (2008). Positron astronomy with SPI/INTEGRAL. New Astronomy Reviews, 52(7–10), 454–456.

    Article  Google Scholar 

  40. Churazov, E., et al. (2011). Positron annihilation spectrum from the Galactic Centre region observed by SPI/INTEGRAL revisited: Annihilation in a cooling ISM? Monthly Notices of the Royal Astronomical Society, 411(3), 1727–1743.

    Article  Google Scholar 

  41. Siegert, T., et al. (2016). Gamma-ray spectroscopy of positron annihilation in the Milky Way. Astronomy & Astrophysics, 586, A84.

    Article  Google Scholar 

  42. Siegert, T., et al. (2019). Constraints on positron annihilation kinematics in the inner Galaxy. Astronomy & Astrophysics, 627 A126.

    Article  Google Scholar 

  43. Richardson, W. H. (1972). Bayesian-based iterative method of image restoration. Journal of the Optical Society of America, 62, 55.

    Article  Google Scholar 

  44. Lucy, L. B. (1974). An iterative technique for the rectification of observed distributions. The Astronomical Journal, 79, 745.

    Article  Google Scholar 

  45. Bouchet, L., et al. (2010). On the morphology of the electron-positron annihilation emission as seen by SPI/INTEGRAL. The Astrophysical Journal, 720 1772.

    Article  Google Scholar 

  46. Skinner, G., et al. (2014). The Galactic distribution of the 511 keV e+/e- annihilation radiation. In Proceedings of 10th INTEGRAL Workshop: A Synergistic View of the High-Energy Sky (vol. 10)

    Google Scholar 

  47. Siegert, T., et al. (2016). Gamma-ray spectroscopy of positron annihilation in the Milky Way. Astronomy & Astrophysics, 586, A84.

    Article  Google Scholar 

  48. Knödlseder, J., et al. (2005). The all-sky distribution of 511 keV electron-positron annihilation emission. Astronomy & Astrophysics, 441(2), 513–532.

    Article  Google Scholar 

  49. Mahoney, W. A., et al. (1984). HEAO 3 discovery of Al-26 in the interstellar medium. The Astrophysical Journal, 286, 578–585.

    Article  Google Scholar 

  50. Plüschke, S. (2001). The COMPTEL 1.809 MeV survey. Exploring the Gamma-Ray Universe, 459, 55–58.

    Google Scholar 

  51. Siegert, T. (2017). Positron-annihilation spectroscopy throughout the milky way. PhD Dissertation, Technical University of Munich. SAO/NASA Astrophysics Data System. https://ui.adsabs.harvard.edu/abs/2017PhDT.......404S/abstract

    Google Scholar 

  52. Krause, M. G., et al. (2015). 26Al kinematics: Superbubbles following the spiral arms? Constraints from the statistics of star clusters and HI supershells. Astronomy & Astrophysics, 578, A113.

    Article  Google Scholar 

  53. Kretschmer, K., et al. (2013). Kinematics of massive star ejecta in the Milky Way as traced by 26Al. Astronomy & Astrophysics, 559, A99.

    Article  Google Scholar 

  54. Pleintinger, M. M. M. (2020). Star groups and their nucleosynthesis. PhD Dissertation, Technical University of Munich. SAO/NASA Astrophysics Data System. https://ui.adsabs.harvard.edu/abs/2020PhDT........13P

    Google Scholar 

  55. Bouchet, L., et al. (2015). The Galactic 26Al emission map as revealed by INTEGRAL SPI. The Astrophysical Journal, 801, 142. https://doi.org/10.1088/0004-637x/801/2/142

    Article  Google Scholar 

  56. Lei, F., Dean, A. J., & Hills, G. L. (1997). Compton polarimetry in gamma-ray astronomy. Space Science Reviews, 82(3), 309–388.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline Beechert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beechert, J., Lazar, H., Shih, A.Y. (2024). Germanium Detectors for MeV Gamma-Ray Astrophysics with the Compton Spectrometer and Imager. In: Hansson, C., Iniewski, K.(. (eds) X-ray Photon Processing Detectors. Springer, Cham. https://doi.org/10.1007/978-3-031-35241-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-35241-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-35240-9

  • Online ISBN: 978-3-031-35241-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics