Skip to main content

Part of the book series: Zoological Monographs ((ZM,volume 8))

  • 172 Accesses

Abstract

Comprehensive systematic account of the development of the avian respiratory system, specifically that of the domestic fowl, Gallus gallus variant domesticus, is presented. Factors and conditions that determine and drive the intricate morphogenetic processes are presented and the most important morphological changes are specified. Ensuing developmental processes such as branching morphogenesis and the role that molecular factors (morphogenetic cues) play in elaboration of the complex morphology of the avian respiratory system is specified. Very early in its development, the lung is firmly affixed to the vertebrae and the ribs on the dorsolateral aspects and the air sacs form as blister-like outgrowths from the cranial, the ventral, and the caudal edges of the organ. At the end of the incubation period, i.e., at hatching (day 21), for the precocial domestic fowl, the respiratory system is well-developed for gas exchange: the air- and the blood capillaries are well-formed, the blood-gas barrier is very thin, and the respiratory surface area is large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott LA, Lester SM, Erickson CA (1991) Changes in mesenchymal cell-shape, matrix collagen and tenascin accompany bud formation in the early chick lung. Anat Embryol 183:299–311

    Article  CAS  Google Scholar 

  • Abdalla MA (1989) The blood supply to the lung. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 281–306

    Google Scholar 

  • Abdalla MA, King AS (1975) The functional anatomy of the pulmonary circulation of the domestic fowl. Respir Physiol 23:267–290

    Article  CAS  PubMed  Google Scholar 

  • Abdalla MA, King AS (1976a) Pulmonary arteriovenous anastomoses in the avian lung: do they exist? Respir Physiol 27:187–191

    Article  CAS  PubMed  Google Scholar 

  • Abdalla MA, King AS (1976b) The functional anatomy of the bronchial circulation of the domestic fowl. J Anat 121:537–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abdalla MA, King AS (1977) The avian bronchial arteries: species variations. J Anat 123:697–704

    CAS  PubMed  PubMed Central  Google Scholar 

  • Abraham JA, Mergia A, Wang JL, Tumolo A, Friedman KA, Hyerild D, Gospodarowicz D, Fiddes JC (1986) Nucleotide sequence of a bovine cDNA clone encoding the angiogenetic protein, basic fibroblast growth factor. Science 233:545–548

    Article  CAS  PubMed  Google Scholar 

  • Abud HE (2004) Shaping developing tissues by apoptosis. Cell Death Differ 11:797–799

    Article  CAS  PubMed  Google Scholar 

  • Abzhanov A (2017) The old and new faces of morphology: the legacy of D’Arcy Thompson’s ‘theory of transformations’ and ‘laws of growth’. Development 144:4284–4297

    Article  CAS  PubMed  Google Scholar 

  • Acarregui MJ, Penisten ST, Goss KL, Ramirez K, Snyder JM (1999) Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol 20:14–23

    Article  CAS  PubMed  Google Scholar 

  • Adamson IYR (1985) Cellular kinetics of the lung. In: Witschi HP, Brain JD (eds) Toxicology of inhaled materials. Springer-Verlag, New York, pp 289–317

    Chapter  Google Scholar 

  • Affolter M, Bellusci S, Itoh N, Shilo B, Thiery JP, Werb Z (2003) Tube or not tube: remodeling epithelial tissues by branching morphogenesis. Dev Cell 4:11–18

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth SB, Milligan DWA (2002) Surfactant therapy for respiratory distress syndrome in premature neonates. Am J Respir Med 1:417–433

    Article  CAS  PubMed  Google Scholar 

  • Ainsworth SJ, Stanley RL, Evans DJR (2010) Developmental stages of the Japanese quail. J Anat 216:3–15

    Article  PubMed  Google Scholar 

  • Akeson AL, Wetzel B, Thompson FY, Brooks SK, Paradis H, Gendron RL, Greenberg JM (2000) Embryonic vasculogenesis by endothelial precursor cells derived from lung mesenchyme. Anat Rec 217:11–23

    CAS  Google Scholar 

  • Akram KM, Patel N, Spiteri MA, Forsyth NR (2016) Lung regeneration: endogenous and exogenous stem cell mediated therapeutic approaches. Int J Mol Sci 17:128. https://doi.org/10.3390/ijms17010128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alberts B, Johnson A, Lewis J, Raff M, Roberts K, Walter P (2002) Molecular biology of the cell, 4th edn. Garland Science, New York

    Google Scholar 

  • Alescio T, Cassini A (1962) Induction in vitro of tracheal buds by pulmonary mesenchyme grafted on tracheal epithelium. J Exp Zool 150:83–94

    Article  CAS  PubMed  Google Scholar 

  • Alexander RMN (1996) Optima for animals. Princeton University Press, Princeton (NJ)

    Google Scholar 

  • Allman T (2006) Stem cells. Lucent Books, Detroit

    Google Scholar 

  • Alsberg E, Moore K, Huang S, Polte T, Inger DE (2004) The mechanical and cytoskeletal basis of lung morphogenesis. In: Massaro DJ, Massaro GC, Chambon P (eds) Lung development and regeneration. Marcel Dekker Inc., New York, pp 247–274

    Google Scholar 

  • Amaral-Silva L, Lambertz M, Fernando JZ, Wilfried K, Luciane HG, Kênia CB (2019) Parabronchial remodeling in chicks in response to embryonic hypoxia. J Exp Biol 222:jeb197970. https://doi.org/10.1242/jeb.197970

    Article  PubMed  Google Scholar 

  • Ambros V (2001) MicroRNAs: tiny regulators with great potential. Cell 107:823–826

    Article  CAS  PubMed  Google Scholar 

  • Amendola V (ed) (2001) Molecular machines and motors. Springer, Berlin

    Google Scholar 

  • Anderson-Berry A, O’Brien EA, Bleyl SB, Lawson A, Gundersen N, Ryssman D, Sweeley J, Dahl MJ, Drake CJ, Schoenwolf GC et al (2005) Vasculogenesis drives pulmonary vascular growth in the developing chick embryo. Dev Dyn 233:145–153

    Article  CAS  PubMed  Google Scholar 

  • Anderson PJ, Lynch TJ, Engelhardt JF (2017) Multipotent myoepithelial progenitor cells are born early during airway submucosal gland development. Am J Respir Cell Mol Biol 56:716–726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrew DJ, Ewald AJ (2010) Morphogenesis of epithelial tubes: insights into tube formation, elongation, and elaboration. Dev Biol 341:34–55

    Article  CAS  PubMed  Google Scholar 

  • Antony N, McDougall AR, Mantamadiotis T, Cole TJ, Bird AD (2016) Creb1 regulates late stage mammalian lung development via respiratory epithelial and mesenchymal-independent mechanisms. Sci Rep 6:25569. https://doi.org/10.1038/srep25569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ardalani H, Assadi AH, Murphy WL (2014) Structure, function, and development of blood vessels: lessons for tissue engineering. In: Cai W (ed) Engineering in translational medicine. Springer, London, pp 155–182

    Chapter  Google Scholar 

  • Arman E, Haffner-Krausz R, Gorivodsky M, Lonai P (1999) FGF-2 is required for limb outgrowth and lung branching morphogenesis. Proc Natl Acad Sci U S A 96:11895–11899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aros CJ, Pantoja CJ, Gomperts BN (2021) Wnt signaling in lung development, regeneration, and disease progression. Commun Biol 4:601. https://doi.org/10.1038/s42003-021-02118-w

    Article  PubMed  PubMed Central  Google Scholar 

  • Arthur W (2006) D’Arcy Thompson and the theory of transformations. Nat Rev Genet 7:401–406

    Article  CAS  PubMed  Google Scholar 

  • Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatterman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    Article  CAS  PubMed  Google Scholar 

  • Atkins P (2007) Four laws that drive the universe. Oxford University Press, Oxford

    Google Scholar 

  • Augustin HG (2001) Tubes, branches, and pillars: the many ways of forming a new vasculature. Circ Res 89:645–647

    Article  CAS  PubMed  Google Scholar 

  • Awkati HA (1939) The development of the avian lung. University of Edinburgh. PhD Thesis

    Google Scholar 

  • Baarsma HA, Königshoff M, Gosens R (2013) The WNT signaling pathway from ligand secretion to gene transcription: molecular mechanisms and pharmacological targets. Pharmacol Ther 138:66–83

    Article  CAS  PubMed  Google Scholar 

  • Bailey K, Worboys BD (1960) The lamellibranch crystalline style. Biochem J 76:487–491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baird A, Klagsbrun M (1991) The fibroblast growth factor family: an overview. Ann N Y Acad Sci 638:xi–xii

    Article  Google Scholar 

  • Baird A, Walicke PA (1989) Fibroblast growth factors. Brit Med Bull 45:438–452

    Article  CAS  PubMed  Google Scholar 

  • Ball P (2013) In retrospect: on growth and form. Nature 494:32–33

    Article  CAS  Google Scholar 

  • Baoukina S, Monticelli L, Amrein M, Tieleman DP (2007) The molecular mechanism of monolayer-bilayer transformations of lung surfactant from molecular dynamics simulations. Biophys J 93:3775–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baral I, Varghese PC, Dutta D (2022) Epigenetics as “conductor” in “orchestra” of pluripotent states. Cell Tiss Res 390:141–172

    Article  CAS  Google Scholar 

  • Bartel DP, Chen CZ (2004) Micomanagers of gene expression: the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5:396–400

    Article  CAS  PubMed  Google Scholar 

  • Bastacky J, Lee CY, Goerke J, Koushafar H, Yager D, Kenaga L, Speed TP, Chen Y, Clements JA (1995) Alveolar lining layer is thin and continuous: low-temperature scanning electron microscopy of rat lung. J Appl Physiol 79:1615–1628

    Article  CAS  PubMed  Google Scholar 

  • Bateson M, Feenders G (2010) The use of passerine bird species in laboratory research: implications of basic biology for husbandry and welfare. ILAR J 51:394–408

    Article  CAS  PubMed  Google Scholar 

  • Baverstock K, Rönkkö M (2014) The evolutionary origin of form and function. J Physiol 592:2261–2265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bedford FK, Christopherson K, Nachtigal MW, Shen WH, Julius DJ, Ingraham HA (1996) Molecular biology of pituitary development and disease. Horm Res 45:19–21

    Article  CAS  PubMed  Google Scholar 

  • Beeby M, Ribardo DA, Brennan CA, Rubyc EG, Jensend GJ, Hendrixson DR (2016) Diverse high-torque bacterial flagellar motors assemble wider stator rings using a conserved protein scaffold. Proc Natl Acad Sci U S A 113:E1917–E1926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Begazo A (2019) Altricial or precocial young birds: know the difference. https://avianreport.com/altricial-precocial-birds/#. Accessed on 09–07–22

  • Bellairs R, Osmond M (2014) Atlas of chick development, 3rd edn. Academic Press, London

    Google Scholar 

  • Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor-10 (FGF-10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878

    Article  CAS  PubMed  Google Scholar 

  • Beloussov LV (2001) Morphogenetic fields: outlining the alternatives and enlarging the context. Riv Biol 94:219–235

    CAS  PubMed  Google Scholar 

  • Beloussov LV (2010) The primacy of organic form. Riv Biol 103:13–18

    PubMed  Google Scholar 

  • Beloussov LV, Grabovsky VI (2006) Morphomechanics: goals, basic experiments and models. Int J Dev Biol 50:81–92

    Article  PubMed  Google Scholar 

  • Beloussov LV, Volodyaev IV (2013) From molecular machines to macroscopic fields: an accent to characteristic times. Eur J Biophys 1:6–15

    Article  Google Scholar 

  • Bennett FM, Tenney SM (1982) Comparative mechanics of mammalian respiratory system. Respir Physiol 49:131–140

    Article  CAS  PubMed  Google Scholar 

  • Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54

    Article  CAS  PubMed  Google Scholar 

  • Bernard FR (1973) Crystalline style formation and function in the oyster Crassostrea gigas (Thunberg 1795). Ophelia 12:159–170

    Article  Google Scholar 

  • Bernhard W, Gebert A, Vieten G, Rau G, Hohlfeld JM, Posttle AD, Freihorst J (2001) Pulmonary surfactant in birds, coping with surface tension in a tubular lung. Am J Physiol Regul Integr Comp Physiol 281:R327–R337

    Article  CAS  PubMed  Google Scholar 

  • Berrocal T, Madrid C, Novo S, Gutierrez J, Arjonilla A, GomezLeon N (2004) Congenital anomalies of the tracheobronchial tree, lung, and mediastinum: embryology, radiology, and pathology. Radiographics 24:e17. https://doi.org/10.1148/rg.e17

    Article  PubMed  Google Scholar 

  • Beyea JA, Olson DM, Vandergriend RA, Harvey S (2005) Expression of growth hormone and its receptor in the lungs of embryonic chicks. Cell Tissue Res 322:379–392

    Article  CAS  PubMed  Google Scholar 

  • Bezuidenhout AJ, Groenewald HB, Soley JT (1999) An anatomical study of the respiratory air sacs in ostriches. Onderst J Vet Res 66:317–325

    CAS  Google Scholar 

  • Bikfalvi A, Klein S, Guiseppe P, Rifkin D (1997) Biological roles of fibroblast growth factor-2. Endocr Rev 18:26–45

    CAS  PubMed  Google Scholar 

  • Bizzarri M, Cucina A, Biava PM, Proietti S, D'Anselmi F, Dinicola S, Pasqualato A, Lisi E (2011) Embryonic morphogenetic field induces phenotypic reversion in cancer cells. Curr Pharm Biotechnol 12:243–253

    Article  CAS  PubMed  Google Scholar 

  • Blanchard G (2018) A 3D cell shape that enables tube formation. Nature 561:182–183

    Article  CAS  PubMed  Google Scholar 

  • Blacker HA, Orgeig S, Daniels CB (2004) Hypoxic control of the development of the surfactant system in the chicken: evidence for physiological heterokairy. Am J Physiol Regul Integr Comp Physiol 287:R403–R410

    Article  CAS  PubMed  Google Scholar 

  • Boatright KM, Salvesen GS (2003) Mechanisms of caspase activation. Curr Opin Cell Biol 15:725–731

    Article  CAS  PubMed  Google Scholar 

  • Boden MA (2008) Mind as machine: a history of cognitive science. Oxford University Press, Oxford (UK)

    Google Scholar 

  • Bódi I, Kocsis K, Benyeda Z, Fejsz N, Molnár D, Nagy N, Olah I (2016) Dual secretion locations on type-II cells in the avian lung suggest local as well as general roles of surfactant. J Morphol 277:1062–1071

    Article  PubMed  Google Scholar 

  • Boers JE, Den Brok JLM, Koudstaal J, Arends JW, Thunnissen FBJM (1996) Number and proliferation of neuroendocrine cells in normal human airway epithelium. Amer J Respir Crit Care Med 154:758–763

    Article  CAS  Google Scholar 

  • Boggaram V (2009) Thyroid transcription factor-1 (TTF-1/Nkx2.1/TITF1) gene regulation in the lung. Clin Sci (Lond) 116:27–35

    Article  CAS  PubMed  Google Scholar 

  • Bookstein FL (1977) The study of shape transformation after D'Arcy Thompson. Math Biosci 34:177–219

    Article  Google Scholar 

  • Boric MP, Figueroa XF (2022) Editorial: Cell communication in vascular biology, V. II. Front Physiol 13:903056. https://doi.org/10.3389/fphys.2022.903056

    Article  PubMed  PubMed Central  Google Scholar 

  • Bowden DH (1983) Cell turnover in the lung. Am Rev Respir Dis 128:S46–S48

    CAS  PubMed  Google Scholar 

  • Bowden DH (1987) Macrophages, dust, and pulmonary diseases. Exp Lung Res 12:89–107

    Article  CAS  PubMed  Google Scholar 

  • Braunschweig L, Meyer AK, Wagenführ L, Storch A (2015) Oxygen regulates proliferation of neural stem cells through Wnt/β-catenin signalling. Mol Cell Neurosci 67:84–92

    Article  CAS  PubMed  Google Scholar 

  • Bremer JL (1912) The development of the aorta and aortic arches in rabbits. Am J Anat 13:111–128

    Article  Google Scholar 

  • Bridges JP, Schehr A, Wang Y, Huo L, Besnard V, Machiko I, Whitsett J, Xu Y (2014) Epithelial SCAP/INSIG/SREBP signaling regulates multiple biological processes duringperinatal lung maturation. PLoS One 9:e91376. https://doi.org/10.1371/journal.pone.0091376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Briscoe J, Kicheva A (2017) The physics of development 100 years after D’Arcy Thompson’s ‘on growth and form’. Mech Dev 145:26–31

    Article  CAS  PubMed  Google Scholar 

  • Brown JH, Gupta VK, Li BL, Milne BT, Restrepo C, West GB (2002) The fractal nature of nature: power laws, ecological complexity and biodiversity. Philos Trans R Soc Lond Ser B Biol Sci 357:619–626

    Article  Google Scholar 

  • Brown DA, Yang N, Ray SD, Wexler P (2014) Apoptosis. In: Wexler P (ed) Encyclopedia of toxicology, 3rd edtn. Academic Press, Oxford, pp 287–294

    Chapter  Google Scholar 

  • Bruce MC, Honaker CE, Ross RJ (1999) Lung fibroblasts undergo apoptosis following alveolization. Am J Respir Cell Mol Biol 20:228–236

    Article  CAS  PubMed  Google Scholar 

  • Bucher TL (1987) Patterns in the mass-independent energetics of avian development. J Exp Zool Suppl 1:139–150

    CAS  PubMed  Google Scholar 

  • Burggren WW (1991) Ontogeny of cardiovascular and respiratory physiology in lower vertebrates. Annu Rev Phhsiol 53:107–135

    Article  CAS  Google Scholar 

  • Burggren WW, Santin JF, Antich MR (2016) Cardio-respiratory development in bird embryos: new insights from a venerable animal model. R Bras Zootec 45. https://doi.org/10.1590/s1806-92902016001100010

  • Burri PH (1997) Structural aspects of pre- and postnatal development and growth of the lung. In: McDonald J (ed) Growth and development of the lung. Marcel Dekker, New York, pp 1–35

    Google Scholar 

  • Burri PH (1999) Lung development and pulmonary angiogenesis. In: Gaultier C, Bourbon J, Post M (eds) Lung disease. Oxford University Press, New York, pp 122–151

    Google Scholar 

  • Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231:474–488

    Article  PubMed  Google Scholar 

  • Cadigan KM, Nusse R (1997) Wnt signaling: a common term in animal development. Genes Dev 11:3286–3305

    Article  CAS  PubMed  Google Scholar 

  • Callahan HS, Pigliucci M, Schlichting CD (1997) Developmental phenotypic plasticity: where ecology and evolution meet molecular biology. BioEssays 19:519–525

    Article  CAS  PubMed  Google Scholar 

  • Cañadas O, Olmeda B, Alonso A, Pérez-Gil J (2020) Lipid-protein and protein–protein interactions in the pulmonary surfactant system and their role in lung homeostasis. Int J Mol Sci 21:3708. https://doi.org/10.3390/ijms21103708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Canu G, Ruhrberg C (2021) First blood: the endothelial origins of hematopoietic progenitors. Angiogenesis. https://doi.org/10.1007/s10456-021-09783-9

  • Cao N, Yao ZX (2011) The hemangioblast: from concept to authentication. Anat Rec 294:580–588

    Article  Google Scholar 

  • Cardoso WN (2000) Lung morphogenesis revisted: old facts, current ideas. Dev Dyn 219:121–130

    Article  CAS  PubMed  Google Scholar 

  • Cardoso WV (2001) Molecular regulation of lung development. Annu Rev Physiol 63:471–494

    Article  CAS  PubMed  Google Scholar 

  • Cardoso WV, Lü J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:389–395

    Article  CAS  PubMed  Google Scholar 

  • Carmeliet P, Ferrara V, Breier G, Pollefeyt S, Kieckens L, Gertsenstein M, Fahrig M, Vandenhoeck A, Harpal K, Eberhardt C et al (1996) Abnormal blood vessel development and lethality in embryos lacking a single vascular endothelial growth factor allele. Nature 380:435–439

    Article  CAS  PubMed  Google Scholar 

  • Carroll C, Engström N, Nilsson PF, Haxen ER, Mohlin S, Berg P, Glud RN, Hammarlund EU (2021) Hypoxia generated by avian embryo growth induces the HIF-α response and critical vascularization. Front Ecol Evol 9:675800. https://doi.org/10.3389/fevo.2021.675800

    Article  Google Scholar 

  • Cassini GH, Toledo N, Vizcaíno SF (2021) Form-function correlation paradigm in mammalogy. A tribute to Leonard B. Radinsky (1937-1985). J Mammal Evol 28:1–5

    Article  Google Scholar 

  • Catt JW, Henman M (2000) Toxic effects of oxygen on human embryo development. Hum Reprod 15:199–206

    Article  PubMed  Google Scholar 

  • Cavin L, Alvarez N (2022) Why coelacanths are almost “living fossils”? Front Ecol Evol 10:896111. https://doi.org/10.3389/fevo.2022.896111

    Article  Google Scholar 

  • Cellière G, Menshykau D, Iber D (2012) Simulations demonstrate a simple network to be sufficient to control branch point selection, smooth muscle and vasculature formation during lung branching morphogenesis. Bio Open 1:775–788

    Article  Google Scholar 

  • Chan BHC, Moosajee M, Rainger J (2021) Closing the gap: mechanisms of epithelial fusion during optic fissure closure. Front Cell Dev 8:620774. https://doi.org/10.3389/fcell.2020.620774

    Article  Google Scholar 

  • Chan CJ, Heisenberg CP, Hiiragi T (2017) Coordination of morphogenesis and cell-fate specification in development. Curr Biol 27:R1024–R1035

    Article  CAS  PubMed  Google Scholar 

  • Chanet S, Martin AC (2014) Mechanical force sensing in tissues. Prog Mol Biol Transl Sci 126:317–352

    Article  PubMed  PubMed Central  Google Scholar 

  • Chaudhury H, Goldie LC, Hirschi KK (2011) Vascular precursor cells. Genes. Cancer 2:1081–1084

    Google Scholar 

  • Chen T, Saw TB, Mège RM, Ladoux B (2018) Mechanical forces in monolayers. J Cell Sci 131:jcs218156. https://doi.org/10.1242/jcs.218156

    Article  CAS  PubMed  Google Scholar 

  • Chen WT, Chen JM, Mueller SC (1986) Coupled expression and colocalization of 140K cell adhesion molecules, fibronectin, and laminin during morphogenesis and cytodifferentiation of chick lung cells. J Cell Biol 103:1073–1090

    Article  CAS  PubMed  Google Scholar 

  • Cheng CW, Smith SK, Charnock-Jones DS (2003) Wnt-1 signaling inhibits human umbilical vein endothelial cell proliferation and alters cell morphology. Exp Cell Res 291:415–425

    Article  CAS  PubMed  Google Scholar 

  • Chinoy MR (2003) Lung growth and development. Front Biosci 8:392–415

    Article  Google Scholar 

  • Chiquet-Ehrismann R, Tucker RP (2011) Tenascins and the importance of adhesion modulation. Cold Spring Harb Perspect Biol 3:a004960. https://doi.org/10.1101/cshperspect.a004960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi AMK, Wang X (2006) Apoptosis. In: Lurent GJ, Shapiro SD (eds) Encyclopedia of respiratory medicine. Academic Press, New York, pp 134–140

    Chapter  Google Scholar 

  • Choi K, Kennedy M, Kazarov A, Papadimitriou JC, Keller G (1998) A common precursor for hematopoietic and endothelial cells. Development 125:725–732

    Article  CAS  PubMed  Google Scholar 

  • Choudhry Z, Rikani AA, Choudhry AM, Tariq S, Zakaria F, Asghar MW, Sarfraz MK, Haider K, Shafiq AA, Mobassarah NJ (2014) Sonic hedgehog signalling pathway: a complex network. Ann Neurosci 21:28–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christensen VL (2009) Development during the first seven days post-hatching. Avian Biol Res 2:27–33

    Article  Google Scholar 

  • Chroneos ZC, Sever-Chroneos Z, Shepherd VL (2010) Pulmonary surfactant: an immunological perspective. Cell Physiol Biochem 25:13–26

    Article  CAS  PubMed  Google Scholar 

  • Çıkla-Süzgün P, Küçükgüzel ŞG (2019) Recent advances in apoptosis: the role of hydrazones. Mini Rev Med Chem 19:1427–1442

    Article  PubMed  Google Scholar 

  • Clément R, Blanc P, Mauroy B, Sapin V, Douady S (2012a) Shape self-regulation in early lung morphogenesis. PLoS One 7:e36925. https://doi.org/10.1371/journal.pone.0036925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clément R, Douady S, Mauroy B (2012b) Branching geometry induced by lung self-regulated growth. Phys Biol 9:066006. https://doi.org/10.1088/1478-3975/9/6/066006

    Article  CAS  PubMed  Google Scholar 

  • Clevers H, Loh KM, Nusse R (2014) Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science 346:1248012. https://doi.org/10.1126/science.1248012

    Article  CAS  PubMed  Google Scholar 

  • Cockell CS (2017) The laws of life. Phys Today 70(3):42. https://doi.org/10.1063/PT.3.3493

    Article  CAS  Google Scholar 

  • Coen E (1999) The art of genes: how organisms make themselves. Oxford University Press, Oxfrord (UK)

    Google Scholar 

  • Coffin JD, Poole TJ (1988) Embryonic vascular development: immunohistochemical identification of the origin and subsequent morphogenensis of the major vessel primordia in the quail embryos. Development 102:735–748

    Article  CAS  PubMed  Google Scholar 

  • Cohen ED, Ihida-Stansbury K, Lu MM, Panettieri RA, Jones PL, Morrisey EE (2009) Wnt signaling regulates smooth muscle precursor development in the mouse lung via a tenascin C/PDGFR pathway. J Clin Invest 119:2538–2549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen ED, Mariol MC, Wallace RM, Weyers J, Kamberov YG, Pradel J, Wilder EL (2002) DWnt4 regulates cell movement and focal adhesion kinase during drosophila ovarian morphogenesis. Dev Cell 2:437–448

    Article  CAS  PubMed  Google Scholar 

  • Coitier V (1573) Anatomie avium. In: Externum et internarum praecipalium humani corporis partium tabulae atque anatomicae exercitationes observationesque varieae. Nuremberg, Germany, pp 130–133

    Google Scholar 

  • Compton SK, Goeringer GC (1981) Development in the chick embryo. I. Phosphatidylcholine synthesis in the developing chick lung. Pediatr Res 15:866–869

    Article  CAS  PubMed  Google Scholar 

  • Comroe JH (1974) Physiology of respiration: an introductory text. Year Book Medical Publishers, Inc, Chicago (IL)

    Google Scholar 

  • Conway EM, Collen D, Carmeliet P (2001) Molecular mechanisms of blood vessel growth. Cardiovasc Res 49:507–521

    Article  CAS  PubMed  Google Scholar 

  • Copp AJ (1995) Death before birth: clues from gene knockouts and mutations. Trends Genet 11:87–93

    Article  CAS  PubMed  Google Scholar 

  • Covello KL, Kehler J, Yu H, Gordan JD, Arsham AM, Hu CJ, Labosky PA, Simon MC, Keith B (2021) HIF-2α regulates Oct-4: effects of hypoxia on stem cell function, embryonic development, and tumor growth. Genes Dev 20:557–570

    Article  Google Scholar 

  • Crapo JD, Barry BE, Gehr P, Bachofen M, Weibel ER (1982) Cell number and cell characteristics of the normal human lung. Am Rev Resp Dis 126:332–337

    CAS  PubMed  Google Scholar 

  • Crivellato E, Ribatti D (2006) Aristotle: the first student of angiogenesis. Leukemia 20:1209–1210

    Article  CAS  PubMed  Google Scholar 

  • Cross SS, Bury JP (2004) The hedgehog signalling pathways in human pathology. Curr Diagnostic Pathol 10:157–168

    Article  Google Scholar 

  • Cullinane C, Cox PN, Silver MM (1992) Persistent pulmonary hypertension of the newborn due to alveolar capillary dysplasia. Pediatr Pathol 12:499–514

    Article  CAS  PubMed  Google Scholar 

  • Cunniff B, Druso JE, van der Velden JL (2020) Lung organoids: advances in generation and 3D-visualization. Histochem Cell Biol 155:301–308

    Article  Google Scholar 

  • Cupello C, Hirasawa T, Tatsumi N, Yabumoto Y, Gueriau P, Isogai S, Matsumoto R, Saruwatari T, King A, Hoshino M et al (2022) Lung evolution in vertebrates and the water-to-land transition. eLife 11:e77156. https://doi.org/10.7554/eLife.77156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dale TC (1998) Signal transduction by the Wnt family of ligands. Biochem J 329:209–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Angio CT, Maniscalco WM (2002) The role of vascular growth factors in hyperoxia-induced injury to the developing lung. Front Biosci 7:1609–1623

    Article  Google Scholar 

  • D'Arcy MS (2019) Cell death: a review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int 43:582–592

    Article  PubMed  Google Scholar 

  • Daniels CB, Orgeig S (2003) Pulmonary surfactant: the key to the evolution of air breathing. News Physiol Sci 18:151–157

    CAS  PubMed  Google Scholar 

  • Darwin C (1859) On the origin of species by means of natural selection, or the preservation of favoured races in the struggle for life, 2nd edn. D. Appleton and Company, New York

    Book  Google Scholar 

  • Davé V, Wert SE, Tanner T, Thitoff AR, Loudy DE, Whitsett JA (2008) Conditional deletion of pten causes bronchiolar hyperplasia. Am J Respir Cell Mol Biol 38:337–345

    Article  PubMed  Google Scholar 

  • Davey MG, McTeir L, Barrie AM, Freem LJ, Stephen LA (2014) Loss of cilia causes embryonic lung hypoplasia, liver fibrosis, and cholestasis in the talpid3 ciliopathy mutant. Organogenesis 10:177–185

    Article  PubMed  PubMed Central  Google Scholar 

  • Davidson LA (2012) Epithelial machines that shape the embryo. Trends Cell Biol 22:82–87

    Article  PubMed  Google Scholar 

  • Davidson AJ, Zon LI (2004) The “definitive” (and “primitive”) guide to zebrafish hematopoiesis. Oncogene 23:7233–7246

    Article  CAS  PubMed  Google Scholar 

  • Davis GE, Bayless KJ (2003) An integrin and rho GTPase-dependent pinocytotic vacuole mechanism controls capillary lumen formation in collagen and fibrin matrices. Microcirculation 10:27–44

    Article  CAS  PubMed  Google Scholar 

  • Dejours P (1988) Respiration in water and air: adaptation, regulation and evolution. Elsevier, Amsterdam

    Google Scholar 

  • Delile J, Herrmann M, Peyriéras N, Doursat R (2017) A cell-based computational model of early embryogenesis coupling mechanical behaviour and gene regulation. Nat Commun 8:13929. https://doi.org/10.1038/ncomms13929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Delphia JM (1961) Early development of the secondary bronchi in the house sparrow Passer domesticus (Linnaeus). Amer Midland Natur 65:44–59

    Article  Google Scholar 

  • DeMello DE (2004) Pulmonary pathology. Semin Neonatol 9:311–329

    Article  PubMed  Google Scholar 

  • DeMello DE, Sawyer D, Galvin N, Reid LM (1997) Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 16:568–581

    Article  CAS  PubMed  Google Scholar 

  • De Miguel C, Linsler F, Casanova J, Franco-Marro X (2016) Genetic basis for the evolution of organ morphomenesis: the case of Spalt and cut in development of insect trachea. Development 143:3615–3622

    PubMed  Google Scholar 

  • Demir R, Seval Y, Huppertz B (2007) Vasculogenesis and angiogenesis in the early human placenta. Acta Histochem 109:257–265

    Article  CAS  PubMed  Google Scholar 

  • De Munck N, Janssens R, Segers I, Tournaye H, Van de Velde H, Verheyen G (2019) Influence of ultra-low oxygen (2%) tension on in-vitro human embryo development. Hum Reprod 34:228–234

    Article  PubMed  Google Scholar 

  • Desai TJ, Cardoso WV (2002) Growth factors in lung development and disease: friends or foe. Respir Res 3:2. https://doi.org/10.1186/rr169

    Article  PubMed  Google Scholar 

  • De Spiegelaere W, Casteleyn C, Van den Broeck W, Plendl J, Bahramsoltani M, Simoens P, Djonov V, Cornillie P (2012) Intussusceptive angiogenesis: a biologically relevant form of angiogenesis. J Vasc Res 49:390–404

    Article  PubMed  Google Scholar 

  • Diamond J (1983) Transport mechanisms: the biology of the wheel. Nature 302:572–573

    Article  CAS  PubMed  Google Scholar 

  • Díaz-Flores L, Gutiérrez R, Gayoso S, García MP, González-Gómez M, Díaz-Flores L, Sánchez R, Carrasco JL, Madrid JF (2020) Intussusceptive angiogenesis and its counterpart intussusceptive lymphangiogenesis. Histol Histopathol 35:1083–1103

    PubMed  Google Scholar 

  • Dietmar K, Clayron DF, Robinson GE, Albertson C, Carey HV, Cummings ME, Dewar K, Edwards SV, Hofman HA, Gross LJ et al (2013) New frontiers for organismal biology. Bioscience 63:464–471

    Article  Google Scholar 

  • Dietz MW, van Kampen M, van Griensven MJM, van Mourik S (2015) Energy budgets of avian embryos: the paradox of the plateau phase in egg metabolic rate. Physiol Zool 71:147–156

    Article  Google Scholar 

  • Di Ieva A (2016) The fractal geometry of the brain: an overview. In: Di Ieva A (ed) The fractal geometry of the brain. Springer Series in Computational Neuroscience, Springer, New York, pp 3–12

    Chapter  Google Scholar 

  • Discher DE, Janmey P, Wang Y (2005) Tissue cells fell and respond to the stiffness of their substrate. Science 310:1139–1143

    Article  CAS  PubMed  Google Scholar 

  • Djonov V, Burri PH (2006) Vascular development: Vasculogenesis and angiogenesis. In: Shepro D (ed) Microvascular research: biology and pathology. Elsevier, Philadelphia, pp 91–96

    Google Scholar 

  • Djonov V, Makanya AN (2005) New insights into intussusceptive angiogenesis. EXS 94:17–33

    Google Scholar 

  • Djonov V, Schmid M, Tschanz SA, Burri PH (2000) Intussusceptive angiogenesis: its role in embryonic vascular network formation. Circ Res 86:286–292

    Article  CAS  PubMed  Google Scholar 

  • Dolev S, Elitzur AC (1998) Biology and thermodynamics: seemingly-opposite phenomena in search of a unified paradigm. Einstein Quart J Biol Med 15:1–16

    Google Scholar 

  • Dos Remedios CG, Chhabra D, Kekic M, Dedova IV, Tsubakihara M, Berry DA, Nosworthy NJ (2003) Actin binding proteins: regulation of cytoskeletal microfilaments. Physiol Rev 83:433–473

    Article  CAS  PubMed  Google Scholar 

  • Downs KM (2003) Florence Sabin and the mechanism of blood vessel lumenization during vasculogenesis. Microcirculation 10:5–25

    Article  CAS  PubMed  Google Scholar 

  • Driskell RR, Goodheart M, Neff T, Liu X, Luo M, Moothart C, Sigmund CD, Hosokawa R, Chai Y, Engelhardt JF (2007) Wnt3a regulates Lef-1 expression during airway submucosal gland morphogenesis. Dev Biol 305:90–102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Driskell RR, Liu X, Luo M, Filali M, Zhou W, Abbott D, Cheng N, Moothart C, Sigmund CD, Engelhardt JF (2004) Wnt-responsive element controls Lef-1 promoter expression during submucosal gland morphogenesis. Am J Physiol Lung Cell Mol Physiol 287:L752–L763

    Article  CAS  PubMed  Google Scholar 

  • Duan D, Yue Y, Zhou W, Labed B, Ritchie TC, Grosschedl R, Engelhardt JF (1999) Submucosal gland development in the airway is controlled by lymphoid enhancer binding factor 1 (LEF1). Development 126:4441–4453

    Article  CAS  PubMed  Google Scholar 

  • Dumont DJ, Gradwohl G, Fong GH, Puri MC, Gertsenstein M, Auerbach A, Breitman ML (1994) Dominant-negative and targeted null mutations in the endothelial receptor tyrosine kinase, tek, reveal a critical role in vasculogenesis of the embryo. Genes Dev 8:1897–1909

    Article  CAS  PubMed  Google Scholar 

  • Duncker HR (1971) The lung-air sac system of birds. A contribution to the functional anatomy of the respiratory apparatus. Ergeb Anat Entwicklung 45:1–171

    Google Scholar 

  • Duncker H-R (1978a) General morphological principles of amniotic lungs. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer, Berlin, pp 2–15

    Chapter  Google Scholar 

  • Duncker HR (1978b) Development of the avian respiratory and circulatory systems. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer-Verlag, Berlin-Heidelberg, pp 260–273

    Chapter  Google Scholar 

  • Duncker HR (1981) Evolution of the structural and functional principles of vertebrate lungs. Verh Anat Ges 75:129–303

    Google Scholar 

  • Duncker HR (2004) Vertebrate lungs: structure, topography and mechanics. A comparative perspective of the progressive integration of respiratory system, locomotor apparatus and ontogenetic development. Respir Physiol Neurobiol 144:111–124

    Article  PubMed  Google Scholar 

  • Dzierzak E, Philipsen S (2013) Erythropoiesis: development and differentiation. Cold Spring Harb Perspect Med 3(4):a011601. https://doi.org/10.1101/cshperspect.a011601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dzierzak E, Speck NA (2008) Of lineage and legacy: the development of mammalian hematopoietic stem cells. Nat Immunol 9:129–136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelman DB, McMenamin M, Sheesley P, Pivar S (2016) Origin of the vertebrate body plan via mechanically biased conservation of regular geometrical patterns in the structure of the blastula. Prog Biophys Mol Biol 121:212–244

    Article  PubMed  Google Scholar 

  • Eichmann A, Pardanaud L, Yuan L, Moyon D (2002) Vasculogenesis and the search for the hemangioblast. J Hematother Stem Cell Res 11:207–214

    Article  PubMed  Google Scholar 

  • Ekblom P, Aufderheide E (1989) Stimulation of tenascin expression in mesenchyme by epithelial-mesenchymal interactions. Int J Dev Biol 33:71–79

    CAS  PubMed  Google Scholar 

  • El Agha E, Bellusci S (2014) Walking along the fibroblast growth factor 10 route: a key pathway to understand the control and regulation of epithelial and mesenchymal cell-lineage formation during lung development and repair after injury. Scientifica 2014:538379. https://doi.org/10.1155/2014/538379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • El Agha E, Herold S, Al Alam D, Quantius J, MacKenzie B, Carraro G, Moiseenko A, Chao CM, Minoo P, Seeger W, Bellusci S (2014) FgF10-positive cells represent a progenitor cell population during lung development and postnatally. Development 141:296–306

    Article  PubMed  PubMed Central  Google Scholar 

  • Eliasson P, Jönsson JI (2010) The hematopoietic stem cell niche: low in oxygen but a nice place to be. J Cell Physiol 222:17–22

    Article  CAS  PubMed  Google Scholar 

  • Elmore S (2007) Apoptosis: a review of programmed cell death. Toxicol Pathol 35:495–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elzanowski A, Brett-Surman MK (1995) Avian premaxilla and tarsometatarsus from the uppermost cretaceous of Montana. Auk 112:762–767

    Google Scholar 

  • Emmet M (2022) Birds: precocial and altricial. https://southafrica.co.za/birds-precocial-and-altricial. html. Accessed on 09–07–22

  • Erdoğan S, Sağsöz H, Paulsen F (2015) Functional anatomy of the syrinx of the chukar partridge (Galliformes: Alectoris chukar) as a model for phonation research. Anat Rec 298:602–617

    Article  Google Scholar 

  • Erjefalt JS, Erjefalt I, Sundler F, Persson CGA (1995) In vivo restitution of airway epithelium. Cell Tiss Res 281:305–315

    Article  CAS  Google Scholar 

  • Erjefält JS, Persson CGA (1997) Airway epithelial repair: breathtakingly quick and multipotentially pathogenic. Thorax 52:1010–1012

    Article  PubMed  PubMed Central  Google Scholar 

  • Escobar LM, Echeverría OM, Vázquez-Nin GH (2015) Necrosis as programmed cell death. In: Ntuli TM (ed) Cell death–autophagy, apoptosis and necrosis. IntechOpen, Rijeka (Croatia), pp 419–434. https://doi.org/10.5772/61483

    Chapter  Google Scholar 

  • Essey M, Maina JN (2020) Fractal analysis of concurrently prepared latex rubber casts of the bronchial and vascular systems of the human lung. Open Biol 10:190249. https://doi.org/10.1098/rsob.190249

    Article  CAS  PubMed Central  Google Scholar 

  • Ettensohn CA (1985) Mechanisms of epithelial invagination. Q Rev Biol 60:289–307

    Article  CAS  PubMed  Google Scholar 

  • Evans AR, Jones D, Boyer AG, Brown JH, Costa DP, Ernest SM, Fitzgerald EMG, Fortelius M, Gittleman JL, Hamilton MJ et al (2012) The maximum rate of mammal evolution. Proc Natl Acad Sci U S A 109:4187–4190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans HE (1909) On the development of the aortae, cardinal veins, and other blood vessels of vertebrate embryos from capillaries. Anat Rec 3:498–518

    Article  Google Scholar 

  • Farge E (2011) Mechanotransduction in development. Curr Top Dev Biol 95:243–265

    Article  PubMed  Google Scholar 

  • Farge E (2013) Mechano-sensing in embryonic biochemical and morphologic patterning: evolutionary perspectives in the emergence of primary organisms. Biol Theory 8:232–244

    Article  Google Scholar 

  • Fathollahipour S, Patil PS, Leipzig ND (2018) Oxygen regulation in development: lessons from embryogenesis towards tissue engineering. Cells Tissues Organs 205:350–371

    Article  CAS  PubMed  Google Scholar 

  • Fedde MR (1980) The structure and gas flow pattern in the avian lung. Poult Sci 59:2642–2653

    Article  CAS  PubMed  Google Scholar 

  • Fedi P, Bafico A, Nieto-Soria A, Burgess WH, Miki T, Bottaro DP, Kraus MH, Aaronson SA (1999) Isolation and biochemical characterization of the human Dkk-1 homologue, a novel inhibitor of mammalian Wnt signaling. J Biol Chem 274:19465–19472

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Jinxi H, Jun W, Cho WC, Xiaoming L (2015) Diversity of epithelial stem cell types in adult lung. Stem Cell Intern 2015:728307. https://doi.org/10.1155/2015/728307

    Article  Google Scholar 

  • Ferguson JE, Kelley RW, Patterson C (2005) Mechanisms of endothelial differentiation in embryonic vasculogenesis. Arterioscl Thromosis Vasc Biol 25:2246–2554

    Article  CAS  Google Scholar 

  • Fernandes-Silva H, Alves MG, Correia-Pinto J, Oliveira PF, Moura RS (2017a) Lung branching morphogenesis in the chicken model is accompanied by temporal metabolic changes. Porto Biomed J 2:222–223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes-Silva H, Araújo-Silva H, Correia-Pinto J, Moura RS (2020) Retinoic acid: a key regulator of lung development. Biomol Ther 10:152. https://doi.org/10.3390/biom10010152

    Article  CAS  Google Scholar 

  • Fernandes-Silva H, Correia-Pinto J, Moura RA (2017b) Canonical sonic hedgehog signaling in early lung development. J Dev Biol J Dev Biol 5:3. https://doi.org/10.3390/jdb5010003

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (1999) Molecular and biological properties of vascular endothelial growth factor. J Mol Med 77:527–543

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N (2000a) The role of vascular endothelial growth factor in angiogenesis. In: Ware JA, Simons M (eds) Angiogenesis in health and disease: basic mechanisms and clinical applications. Mercel Dekker, New York, pp 47–73

    Google Scholar 

  • Ferrara N (2000b) Vascular endothelial growth factor and the regulation of angiogenesis. Recent Prog Horm Res 55:15–35

    CAS  PubMed  Google Scholar 

  • Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Davis-Smyth T (1997) The biology of vascular endothelial growth factor. Endocr Rev 18:4–25

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Gerber HP (1999) The vascular endothelial growth factor family. In: Ware JA, Simons M (eds) Angiogenesis and cardiovascular disease. Oxford University Press, New York, pp 101–127

    Google Scholar 

  • Ferrara N, Gerber HP, LeCouter J (2003) The biology of VEGF and its receptors. Nat Med 9:669–676

    Article  CAS  PubMed  Google Scholar 

  • Ferrara N, Houck K, Jakeman L, Leung DW (1992) Molecular and biological properties of the vascular endothelial growth factor family of proteins. Endocr Rev 13:18–32

    Article  CAS  PubMed  Google Scholar 

  • Fick A (1855) Ueber Diffusion. Annalen der Physik (in German) 94:59–86

    Article  Google Scholar 

  • Ficken MD, Barnes HJ (1989) Acute air sacculitis in turkeys inoculated with Pasteurella multocida. Vet Pathol 26:231–237

    Article  CAS  PubMed  Google Scholar 

  • Fischer B, Bavister BD (1993) Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fert 99:673–679

    Article  CAS  Google Scholar 

  • Fletcher DA, Mullins RD (2010) Cell mechanics and the cytoskeleton. Nature 463:485–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fletcher OJ (1980) Pathology of the avian respiratory system. Poult Sci 59:2666–2679

    Article  CAS  PubMed  Google Scholar 

  • Folkman J, Klagsbrun M (1987) Angiogenic factors. Science 235:442–447

    Article  CAS  PubMed  Google Scholar 

  • Fraga MV, Guttentag S (2012) Lung development: embryology, growth, maturation, and developmental biology. In: Gleason CA, Devaskar SU (eds) Avery's diseases of the newborn, 9th edn. Elsevier BV, New York, pp 571–583

    Chapter  Google Scholar 

  • Frank GB (2003) Ornithology, 2nd edn. WH Freeman and Company, New York

    Google Scholar 

  • Franks TJ, Colby TV, Travis WD, Tuder RM, Reynolds HY, Brody AR, Cardoso WV, Crystal RG, Drake CJ, Engelhardt J et al (2008) Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proc Am Thorac Soc 15:763–766

    Article  Google Scholar 

  • Franzdóttir SR, Axelsson IT, Arason AJ, Baldursson Ó, Gudjonsson T, Magnusson MK (2010) Airway branching morphogenesis in three dimensional culture. Respir Res 11:1–10

    Article  Google Scholar 

  • Fujii S, Muranaka T, Matsubayashi J, Yamada S, Yoneyama A, Takakuwa T (2021) Bronchial tree of the human embryo: categorization of the branching mode as monopodial and dipodial. PLoS One 15:e0245558. https://doi.org/10.1371/journal.pone.0245558

    Article  CAS  Google Scholar 

  • Full R, Earis K, Wong M, Caldwell R (1993) Locomotion like a wheel? Nature 365:495. https://doi.org/10.1038/365495A0

    Article  Google Scholar 

  • Funk EC, Breen C, Sanketi BD, Kurpios N, McCune A (2020a) Changes in Nkx2.1, Sox2, Bmp4, and Bmp16 expression underlying the lung-to-gas bladder evolutionary transition in ray-finned fishes. Evol Dev 22:384–402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk E, Lencer E, McCune A (2020b) Dorsoventral inversion of the air-filled organ (lungs, gas bladder) in vertebrates: RNAsequencing of laser capture microdissected embryonic tissue. J Exp Zool B Mol Dev Evol 334:325–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Funk RH, Monsees T, Ozkucur N (2009) Electromagnetic effects–from cell biology to medicine. Prog Histochem Cytochem 43:177–264

    Article  PubMed  Google Scholar 

  • Galambos C, DeMello DE (2007) Molecular mechanisms of pulmonary vascular development. Pediatric Dev Pathol 10:1–18

    Article  CAS  Google Scholar 

  • Gallanger BC (1986) Branching morphogenesis in the avian lung: Electronmicroscopic studies using cataionic dyes. J Embryol Exp Morphol 94:189–205

    Google Scholar 

  • Gao Y, Cornfield DN, Stenmark KR, Thébaud B, Abman SH, Raj JU (2016) Unique aspects of the developing lung circulation: structural development and regulation of vasomotor tone. Pulm Circ 6:407–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao Y, Raj JU (2010) Regulation of the pulmonary circulation in the fetus and newborn. Physiol Rev 90:1291–1335

    Article  CAS  PubMed  Google Scholar 

  • Garcia HG, Kondev J, Orme N, Theriot JA, Phillips R (2011) Thermodynamics of biological processes. Methods Enzymol 492:27–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gardel ML, Nakamura F, Hartwig JH, Crocker JC, Stossel TP, Weitz DA (2006) Prestressed F-actin networks cross-linked by hinged filamins replicate mechanical properties of cells. Proc Natl Acad Sci U S A 103:1762–1767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gebb SA, Shannon JM (2000) Tissue interactions mediate early events in pulmonary vasculogenesis. Dev Dyn 217:159–169

    Article  CAS  PubMed  Google Scholar 

  • Geetha-Loganathan P, Nimmagadda S, Antoni L, Fu K, Whiting CJ, Francis-West P, Richman JM (2009) Expression of WNT signalling pathway genes during chicken craniofacial development. Dev Dyn 238:1150–1165

    Article  CAS  PubMed  Google Scholar 

  • Gefen E, Ar A (2001) Gas exchange and energy metabolism on the ostrich (Struthio camelus) embryo. Comp Biochem Pysiol A: Mol Integr Physiol 130:689–699

    Article  CAS  Google Scholar 

  • Gehr P, Bachofen M, Weibel ER (1978) The normal human lung: ultrastructure and morphometric estimation of diffusion capacity. Respir Physiol 32:121–140

    Article  CAS  PubMed  Google Scholar 

  • Genbacev O, Zhou Y, Ludlow JW, Fisher SJ (1997) Regulation of human placental development by oxygen tension. Science 277:1669–1672

    Article  CAS  PubMed  Google Scholar 

  • Gerritsen ME, Soriano R, Yang S, Zlot C, Ingle G, Toy K, Williams PM (2003) Branching out: a molecular fingerprint of endothelial differentiation into tube-like structures generated by affymetrix oligonucleotide arrays. Microcirculation 10:63–81

    Article  CAS  PubMed  Google Scholar 

  • Gerhardt H (2008) VEGF and endothelial guidance in angiogenic sprouting. Organogenesis 4:241–246

    Article  PubMed  PubMed Central  Google Scholar 

  • Gerhardt H, Betsholtz C (2005) How do endothelia cells orientate? EXS 94:3–15

    Google Scholar 

  • Ghabrial A, Luschnig S, Metzstein MM, Krasnow MA (2003) Branching morphogenesis of the drosophila tracheal system. Annu Rev Cell Dev Biol 19:623–647

    Article  CAS  PubMed  Google Scholar 

  • Giannone G, Sheetz MP (2006) Substrate rigidity and force define form through tyrosine phosphatase and kinase pathways. Trends Cell Biol 16:213–223

    Article  CAS  PubMed  Google Scholar 

  • Girosi D, Bellodi S, Sabatini F, Rossi GA (2006) The lung and the gut: common origins, close links. Paediatr Resp Rev 7S:S235–S239

    Article  Google Scholar 

  • Gjorevski N, Nelson CM (2010a) The mechanics of development: models and methods for tissue morphogenesis. Birth Defects Res C Embryo Today 90:193–202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gjorevski N, Nelson CM (2010b) Endogenous patterns of mechanical stress are required for branching morphogenesis. Integr Biol 2:424–434

    Article  CAS  Google Scholar 

  • Gilbert SF (2000) Developmental biology, 6th ed Sunderland (MA), Sinauer Associates: 2000. Morphogenesis and Cell Adhesion. https://www.ncbi.nlm.nih.gov/books/NBK10021/

  • Gilbert SF, Opitz JM, Raff RA (1996) Resynthesizing evolutionary and developmental biology. Dev Biol 173:357–372

    Article  CAS  PubMed  Google Scholar 

  • Gilbert SF, Sarkar S (2000) Embracing complexity: organism for the 21st century. Dev Dyn 219:1–9

    Article  CAS  PubMed  Google Scholar 

  • Gillich A, Zhang F, Farmer CG, Travaglini KJ, Tan SY, Gu M, Zhou B, Feinstein JA, Krasnow MA, Metzger RJ (2020) Capillary cell-type specialization in the alveolus. Nature 586:785–789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glasser JR, Mallampalli RK (2012) Surfactant and its role in the pathobiology of pulmonary infection. Microbes Infect 14:17–25

    Article  CAS  PubMed  Google Scholar 

  • Gleghorn JP, Kwak J, Pavlovich AL, Nelson CM (2012) Inhibitory morphogens and monopodial branching of the embryonic chicken lung. Dev Dyn 241:852–862

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glenny RW (2011) Emergence of matched airway and vascular trees from fractal rules. J Appl Physiol 110:1119–1129

    Article  PubMed  Google Scholar 

  • Glenny RW, Krueger M, Bauer C, Beichel RR (2020) The fractal geometry of bronchial trees differs by strain in mice. J Appl Physiol 128:362–367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldie LC, Nix MK, Hirschi KK (2008) Embryonic vasculogenesis and hematopoietic specification. Organogenesis 4:257–263

    Article  PubMed  PubMed Central  Google Scholar 

  • Goldin GV, Opperman LA (1980) Induction of supernumerary tracheal buds and the stimulation of DNA synthesis in the embryonic chick lung and trachea by epidermal growth factor. J Embryol Exp Morphol 60:235–243

    CAS  PubMed  Google Scholar 

  • Goldstein M, Inge F (1993) The refrigerator and the universe: understanding the laws of energy. Harvard University Press, Harvard (MA)

    Google Scholar 

  • Gontan C, Munck A, Vermeij M, Grosveld F, Tibboel D, Rottier R (2008) Sox2 is important for two crucial processes in lung development: branching morphogenesis and epithelial cell differentiation. Dev Biol 317:296–309

    Article  CAS  PubMed  Google Scholar 

  • Goodwin BC (1985) The causes of morphogenesis. BioEssays 3:32–36

    Article  CAS  PubMed  Google Scholar 

  • Goodwin BC (1994) How the leopard changed its spots: the evolution of complexity. Charles Scribner’s Sons, New York

    Google Scholar 

  • Goodwin K, Nelson CM (2020) Branching morphogenesis. Development 147:dev184499. https://doi.org/10.1242/dev.184499

    Article  CAS  PubMed  Google Scholar 

  • Goodwin K, Nelson CM (2021) Uncovering cellular networks in branching morphogenesis using single-cell transcriptomics. Curr Topics Dev Biol 143:239–280. https://doi.org/10.1016/bs.ctdb.2020.09.004

    Article  Google Scholar 

  • Gomes AM, Bhat R, Correia AL, Mott JD, Ilan N, Vlodavsky I, Pavão MS, Bissell M (2015) Mammary branching morphogenesis requires reciprocal signaling by heparanase and MMP-14. J Cell Biochem 116:1668–1679

    Article  CAS  PubMed  Google Scholar 

  • Gospodarowicz D (1991) Biological activities of fibroblast growth factors. In: Baird A, Klagsbrun M (eds) The fibroblast growth factor family. New York Academy of Science, New York, pp 1–8

    Google Scholar 

  • Goss AM, Tian Y, Tsukiyama T, Cohen ED, Zhou D, Lu MM, Yamaguchi TP, Morrisey EE (2009) Wnt2/2b and β-catenin signaling are necessary and sufficient to specify lung progenitors in the foregut. Dev Cell 17:290–298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gould J (1971) D'Arcy Thompson and the science of form. New Lit Hist 2:229–258

    Article  Google Scholar 

  • Gould SJ (1981) Kingdoms without wheels. Natur. History 90:42–48

    Google Scholar 

  • Grant ZL, Coultas L (2019) Growth factor signaling pathways in vascular development and disease. Growth Factors 37:53–67

    Article  CAS  PubMed  Google Scholar 

  • Greaves P (2012) Histopathology of preclinical toxicity studies: interpretation and relevance in drug safety studies, 4th edn Mammary gland. Academic Press, Boston, pp 69–97

    Book  Google Scholar 

  • Green JBA, Sharpe J (2015) Positional information and reaction-diffusion: two big ideas in developmental biology combine. Development 142:1203–1211

    Article  CAS  PubMed  Google Scholar 

  • Green M, Chen A, Nostro MC, d’Souza SL, Schaniel C, Lemischka IR, Gonon-Evans V, Keller G, Snoeck HW (2011) Generation of anterior foregut endoderm from human embryonic and induced pluripotent stem cells. Nat Biotechnol 29:267–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Groenman F, Unger S, Post M (2005) The molecular basis for abnormal human lung development. Biol Neonate 87:164–177

    Article  CAS  PubMed  Google Scholar 

  • Gritsun TA, le Feber J, Rutten WLC (2012) Growth dynamics explain the development of spatiotemporal burst activity of young cultured neuronal networks in detail. PLoS One 7:e43352. https://doi.org/10.1371/journal.pone.0043352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo Y, Sun M, Garfinkel A, Zhao X (2014) Mechanisms of side branching and tip splitting in a model of branching morphogenesis. PLoS One 9:e102718. https://doi.org/10.1371/journal.pone.0102718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Günther A, Ruppert C, Schmidt R, Markart P, Grimminger F, Walmrath D, Seeger W (2001) Surfactant alteration and replacement in acute respiratory distress syndrome. Respir Res 2:353–364

    Article  PubMed  PubMed Central  Google Scholar 

  • Hackett BP, Binge CD, Gitlin JD (1996) Mechanisms of gene expression and cell fate determination in the developing pulmonary epithelium. Annu Rev Physiol 58:51–71

    Article  CAS  PubMed  Google Scholar 

  • Hacohen N, Kramer S, Sutherland D, Hiromi Y, Krasnow M (1998) Sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the drosophila airways. Cell 92:253–263

    Article  CAS  PubMed  Google Scholar 

  • Hahn H (1909) Experimental studies on the development of the blood and the first blood vessels in the chick. Arch Entwicklungsmechanik Organ 4:140–143

    Google Scholar 

  • Halatek J, Brauns F, Frey E (2018) Self-organization principles of intracellular pattern formation. Phil Trans R Soc (Lond) B 373:20170107. https://doi.org/10.1098/rstb.2017.0107

    Article  CAS  Google Scholar 

  • Hall SM, Hislop AA, Harworth SG (2002) Origin, differentiation, and maturation of human pulmonary veins. Am J Respir Cell Mol Biol 26:333–340

    Article  CAS  PubMed  Google Scholar 

  • Halliday A, Hunt BJ, Poston L, Schachter M (eds) (1998) An introduction to vascular biology: from physiology to pathophysiology. Cambridge University Press, Cambridge, pp 3–19

    Google Scholar 

  • Hallou A, Brunet T (2020) On growth and force: mechanical forces in development. Development 147:dev187302. https://doi.org/10.1242/dev.187302

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morph 88:49–92

    Article  CAS  PubMed  Google Scholar 

  • Hamburger V, Hamilton HL (1992) A series of normal stages in the development of the chick embryo. Dev Dyn 195:231–272

    Article  CAS  PubMed  Google Scholar 

  • Han RNN, Liu J, Tanswell AK, Post M (1992) Expression of basic fibroblast growth factor and receptor: immunolocalization studies in developing rat fetal lung. Pediatr Res 31:435–440

    Article  CAS  PubMed  Google Scholar 

  • Han S, Mallampalli RK (2015) The role of surfactant in lung disease and host defense against pulmonary infections. Ann Amer Thoracic Soc 12:765–774

    Article  Google Scholar 

  • Hannezo E, Simons BD (2019) Multiscale dynamics of branching morphogenesis. Curr Opin Cell Biol 60:99–105

    Article  CAS  PubMed  Google Scholar 

  • Hans C (2006) Wnt/β-catenin signaling in development and disease. Cell 127:469–480

    Article  Google Scholar 

  • Harris MP, Hasso SM, Ferguson MWJ, Fallon JF (2006) The development of archosaurian first-generation teeth in a chicken mutant. Curr Biol 16(4):371–377

    Article  CAS  PubMed  Google Scholar 

  • Harris RS (2005) Pressure-volume curves of the respiratory system. Respir Care 50:78–98

    PubMed  Google Scholar 

  • Harvey AJ (2007) The role of oxygen in ruminant preimplantation embryo development and metabolism. Anim Reprod Sci 98:113–128

    Article  CAS  PubMed  Google Scholar 

  • Harvey EP, Ben-Tal A (2016) Robust unidirectional airflow through avian lungs: new insights from a piecewise linear mathematical model. PLoS Comput Biol 12:e1004637. https://doi.org/10.1371/journal.pcbi.1004637

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey W (1651) Exercitatio 3. Exercitationes de generatione animalium. Elzevir, Jansson and Ravesteyn, Amsterdam

    Google Scholar 

  • Hay ED (1995) An overview of epithelia-mesenchymal transformation. Acta Anat 154:8–20

    Article  CAS  PubMed  Google Scholar 

  • Hay ED (2005) The mesenchymal cell, its role in the embryo, and the remarkable signaling mechanisms that create it. Dev Dyn 233:706–720

    Article  CAS  PubMed  Google Scholar 

  • Hayashi S, Kondo T (2018) Development and function of drosophila tracheal system. Genetics 209:367–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hegazi AG, Abdel-Rahman EH (2015) Cytokines. Austin Publishing Group. Innovative Immunology, pp. 1–38. www.austinpublishinggroup.com/ebooks

  • Heisenberg CP, Bellaïche Y (2013) Forces in tissue morphogenesis and patterning. Cell 153:948–962

    Article  CAS  PubMed  Google Scholar 

  • Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12:551–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herriges M, Morrisey EE (2014) Lung development: orchestrating the generation and regeneration of a complex organ. Development 141:502–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill MA (2021) Embryology: respiratory system development. Retrieved from https://embryology.med.unsw.edu.au/emberyology/index.php/Respiratory_System_Development on 21-3-2021

  • Hill MA (2022) Embryology: chicken development. Retrieved from https://embryology.med.unsw.edu.au/embryology/index.php/Chicken_Development on 01-05-22

  • Hines EA, Sun X (2014) Tissue crosstalk in lung development. J Cell Biochem 115:1469–1477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • His W (1900) Lecithoblast und Angioblast der Wirbeltiere. Abhandl Math-Phys Gen Wiss 26:171–328

    Google Scholar 

  • Hislop AA (2002) Airway and blood vessel interaction during lung development. J Anat 201:325–334

    Article  PubMed  PubMed Central  Google Scholar 

  • Hislop A, Reid L (1972) Intra-pulmonary arterial development during fetal life-branching pattern and structure. J Anat 113:35–48

    CAS  PubMed  PubMed Central  Google Scholar 

  • Höckel M (2015) Morphogenetic fileds of embryonic development in locoregional cancer spread. Lancet Oncol 16:148–151

    Article  Google Scholar 

  • Hogan BLM (1999) Morphogenesis Cell 96:225–233

    Article  CAS  PubMed  Google Scholar 

  • Hogan BL, Barkauskas CE, Chapman HA, Epstein JA, Jain R, Hsia CW, Niklason L, Calle E, Le A, Randell SH et al (2014) Repair and regeneration of the respiratory system: complexity, plasticity and mechanisms of lung stem cell function. Cell Stem Cell 15:123–138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogan BLM, Grindley J, Bellusci S, Dunn NR, Emoto H, Itoh N (1997) Branching morphogenesis of the lung: new models for classical problems. Cold Spring Harbour Symp Quart Biol 62:249–256

    Article  CAS  Google Scholar 

  • Hogan BL, Kolodziej PA (2002) Organogenesis: molecular mechanisms of tubulogenesis. Nat Rev Genet 3:513–523

    Article  CAS  PubMed  Google Scholar 

  • Holland JD, Klaus A, Garratt AN, Birchmeier W (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25:254–264

    Article  CAS  PubMed  Google Scholar 

  • Horowitz A, Simons M (2008) Branching morphogenesis. Circ Res 103:784–795

    Article  CAS  PubMed  Google Scholar 

  • Horowitz A, Simons M (2009) Branching morphogenesis. Circ Res 104:e21. https://doi.org/10.1161/CIRCRESAHA.108.191494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoyt DF (1987) A new model of avian embryonic metabolism. J Exp Zool Suppl 1:127–138

    CAS  PubMed  Google Scholar 

  • Hsia CC, Hyde DM, Weibel ER (2016) Lung structure and the intrinsic challenges of gas exchange. Compr Physiol 6:827–895

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsia CC, Schmitz A, Lambertz M, Perry SF, Maina JN (2013) Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 3:849–915

    Article  PubMed  PubMed Central  Google Scholar 

  • Hsieh JC, Kodjabachian L, Rebbert ML, Rattner A, Smallwood PM, Samos CH, Nusse R, Dawid IB, Nathans J (1999) A new secreted protein that binds to Wnt proteins and inhibits their activities. Nature 398:431–436

    Article  CAS  PubMed  Google Scholar 

  • Hsu YC, Osinski J, Campbell CE, Litwack ED, Wang D, Liu S, Bachurski CJ, Gronostajski RM (2011) Mesenchymal nuclear factor I B regulates cell proliferation and epithelial differentiation during lung maturation. Dev Biol 354:242–252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hudlická O, Brown MD, Egginton S (1998) Angiogenesis: basic concepts and methodology. In: Halliday A, Hunt BJ, Poston L, Schachter M (eds) An introduction to vascular biology: from physiology to pathophysiology. Cambridge University Press, Cambridge, pp 3–19

    Google Scholar 

  • Hudlicka O, Tyler KR (1986) Angiogenesis: the growth of the vascular system. Academic Press, London

    Google Scholar 

  • Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115:3977–3978

    Article  CAS  PubMed  Google Scholar 

  • Huxley TH (1882) On the respiratory organs of apteryx. Proc Zool Soc (Lond) 1882:560–569

    Article  Google Scholar 

  • Hyatt BA, Shangguan X, Shannon JM (2002) BMP-4 modulates fibroblast growth factor-mediated induction of proximal and distal lung differentiation in mouse embryonic tracheal epithelium in mesenchyme free culture. Dev Dyn 225:153–165

    Article  CAS  PubMed  Google Scholar 

  • Hyde DM, Blozis SA, Avdalovic MV, Putney LF, Dettorre R, Quesenberry NJ, Singh P, Tyler NK (2007) Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am J Physiol Lung Cell Mol Physiol 293:L570–L579

    Article  CAS  PubMed  Google Scholar 

  • Hylka VW, Doneen BA (1982) Lung phospholipids in the emberyonic and immature chicken: changes in lipid composition biosynthesis during maturation of the surfactant system. J Exp Zool 220:71–80

    Article  CAS  PubMed  Google Scholar 

  • Iber D (2021) The control of lung branching morphogenesis. Curr Top Dev Biol 143:205–237

    Article  PubMed  Google Scholar 

  • Iber D, Menshykau D (2013) The control of branching morphogenesis. Open Biol 3:130088. https://doi.org/10.1098/rsob.130088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingber DE (2005) Mechanical control of tissue growth: function follows form. Proc Natl Acad Sci U S A 102:11571–11572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ingber DE (2006) Cellular mechano-transduction: putting all the pieces together again. FASEB J 20:811–827

    Article  CAS  PubMed  Google Scholar 

  • Ingber DE, Folkman J (1989) Mechanochemical switching between growth and differentiation during fibroblast growth factor-stimulated angiogenesis in vitro: role of extracellular membrane. J Cell Biol 109:317–330

    Article  CAS  PubMed  Google Scholar 

  • Ingham PW, McMahon AP (2001) Hedgehog signaling in animal development: paradigms and principles. Genes Dev 15:3059–3087

    Article  CAS  PubMed  Google Scholar 

  • Islam R, Sultana N, Alam R, Akter A, Anisuzzaman MD, Haque Z, Khan MD, ABN ALI (2022) Dose and time-dependent effects of glucocorticoid: a morphologic and morphometric study in the broiler lung. Turkish J Vet Anim Sci 46(4). https://doi.org/10.55730/1300-0128.4233

  • Itkonen E (2017) The whole is greater than the sum of its parts–true, false or meaningless. J Semiotics 7:21–50

    Article  Google Scholar 

  • Itoh N (2004) Fibroblast growth factor (FGF). In: Luciano M (ed) Encyclopedia of endocrine diseases. Elseier, New York, pp 67–71

    Chapter  Google Scholar 

  • Jaffredo T, Nottingham W, Liddiard K, Bollerot K, Pouget C, de Bruijn M (2005) From hemangioblast to hematopoietic stem cell: an endothelial connection. Exp Hematol 33:1029–1040

    Article  PubMed  Google Scholar 

  • Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–L607

    Article  CAS  PubMed  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9:685–693

    Article  CAS  PubMed  Google Scholar 

  • Janmey PA, McCulloch CA (2007) Cell mechanics: integrating cell responses to mechanical stimuli. Annu Rev Biomed Eng 9:1–34

    Article  CAS  PubMed  Google Scholar 

  • Jaskoll T, Abichaker G, Witcher D, Sala FG, Bellusci S, Hajihosseini MK, Melnick M (2005) FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis. BMC Dev Biol 5:11. https://doi.org/10.1186/1471-213X-5-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jewett CE, Prekeris R (2018) Insane in the apical membrane: trafficking events mediating apicobasal epithelial polarity during tube morphogenesis. Traffic. https://doi.org/10.1111/tra.12579

  • Jones AW, Radnor CJP (1972a) The development of the chick tertiary bronchus. I. General development and the mode of production of the osmiophilic inclusion body. J Anat 113:303–324

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones AW, Radnor CJP (1972b) The development of the chick tertiary bronchus. II. The origin of the surface lining system. J Anat 113:325–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones JH, Effmann EL, Schmidt-Nielsen K (1985) Lung volume changes during respiration in ducks. Respir Physiol 59:15–25

    Article  CAS  PubMed  Google Scholar 

  • Jones MR, Chong L, Belleusci S (2021) Fgf10/Fgfr2b signaling orchestrates the symphony of molecular, cellular, and physical processes required for harmonious airway branching morphogenesis. Front Cell Dev Biol 8:620667. https://doi.org/10.3389/fcell.2020.620667

    Article  PubMed  PubMed Central  Google Scholar 

  • Jośko J, Gwóźdź B, Jedrzejowska-Szypułka H, Hendryk S (2000) Vascular endothelial growth factor (VEGF) and its effect on angiogenesis. Med Sci Monit 5:1047–1052

    Google Scholar 

  • Judd W (1979) The secretions and fine structure of bivalve crystalline style sacs. Ophelia 18:205–233

    Article  Google Scholar 

  • Juillet A (1911) Recherches anatomiques, embryologiques, histologiques et comparatives sur le poumon des oiseaux. Arch Zool Exp Gen 9:207–371

    Google Scholar 

  • Jürgens KD, Gros G (2002) Phylogeny of gas exchange systems. Anasthesiol Intensivmed Notfallmed Schmerzther 37:185–198

    Article  PubMed  Google Scholar 

  • Kain KH, Miller JW, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, Barnett JV, Zijlstra A (2014) The chick embryo as an expanding experimental model for cancer and cardiovascular research. Dev Dyn 243:216–228

    Article  PubMed  Google Scholar 

  • Kaipainen A, Bielenberg DR (2010) Hemangiogenesis versus lymphangiogenesis. In: Dartt DA (ed) Encyclopedia of the eye. Academic Press, Oxford, pp 227–232

    Chapter  Google Scholar 

  • Kallapur S, Kotecha S (2016) Perinatal modifiers of lung structure and function. In: Jobe A, Whitsett J, Abman S (eds) Fetal and neonatal lung development: clinical correlates and technologies for the future. Cambridge University Press, Cambridge, pp 187–204

    Chapter  Google Scholar 

  • Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kanoldt V, Fischera L, Grashoff C (2019) Unforgettable force–crosstalk and memory of mechanosensitive structures. Biol Chem 400:687–698

    Article  CAS  PubMed  Google Scholar 

  • Kardong KV (2014) Vertebrates–comparative anatomy, function, evolution, 6th edn. McGraw-Hill, New York

    Google Scholar 

  • Karolak JA, Gambin T, Szafranski P, Stankiewicz P (2021) Potential interactions between the TBX4-FGF10 and SHH-FOXF1 signaling during human lung development revealed using ChIP-seq. Respir Res 22:26. https://doi.org/10.1186/s12931-021-01617-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsnelson MI, Wolf YI, Koonin EV (2018) Towards physical principles of biological evolution. Phys Sci 93:043001. https://doi.org/10.1101/182378

    Article  CAS  Google Scholar 

  • Katsumi A, Milanini J, Kiosses WB, del Pozo MA, Kaunas R, Chien S, Hahn KM, Schwartz MA (2002) Effects of cell tension on the small GTPase Rac. J Cell Biol 158:153–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufman SL, Burri PH, Weibel ER (1974) The postnatal growth of the rat lung. II. Autoradiography. Anat Rec 180:63–76

    Article  Google Scholar 

  • Kechagia JZ, Ivaska J, Roca-Cusachs P (2019) Integrins as biomechanical sensors of the microenvironment. Nat Rev Mol Cell Biol 20:457–473

    Article  CAS  PubMed  Google Scholar 

  • Keller R (2012) Physical biology returns to morphogenesis. Science 338:201–203

    Article  CAS  PubMed  Google Scholar 

  • Keller R, Shook D (2011) The bending of cell sheets–from folding to rolling. BMC Biol 9:90. https://doi.org/10.1186/1741-7007-9-90

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerr JFR, Wyllie AH, Currie AR (1972) Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 26:239–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kicheva A, Cohen M, Briscoe J (2012) Developmental pattern formation: insights from physics and biology. Science 338:210–212

    Article  CAS  PubMed  Google Scholar 

  • Kim HY, Varner VD, Nelson CM (2013) Apical constriction initiates new bud formation during monopodial branching of the embryonic chicken lung. Development 140:3146–3155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kina YP, Khadim A, Seeger W, El Agha E (2021) The lung vasculature: a driver or passenger in lung branching morphogenesis? Front Cell Dev Biol 8:623868. https://doi.org/10.3389/fcell.2020.623868

    Article  PubMed  PubMed Central  Google Scholar 

  • Kindberg A, Hu JK, Bush JO (2020) Forced to communicate: integration of mechanical and biochemical signaling in morphogenesis. Curr Opin Cell Biol 66:59–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King AS (1966) Structural and functional aspects of the avian lung and its air sacs. Intern Rev Gen Exp Zool 2:171–267

    Article  Google Scholar 

  • King AS (1975) Aves respiratory system. In: Getty R (ed) Sisson and Grossman’s the anatomy of the domestic animals, vol 2, 5th edn. Saunders, Philadelphia, pp 1011–1075

    Google Scholar 

  • King AS, King DZ (1979) Avian morphology: general principles. In: King AS, McLelland J (eds) Form and function in birds, vol 1. Academic Press, London, pp 1–38

    Google Scholar 

  • King AS, McLelland J (1984) Birds: their structure and function, 2nd edn. Bailliéle Tindall, London

    Google Scholar 

  • King AS, McLelland J (eds) (1989) Form and function in birds, vol 4. Academic Press, London

    Google Scholar 

  • King AS, Molony V (1971) The anatomy of respiration. In: Bell DF, Freeman BM (eds) Physiology and biochemistry of the domestic fowl, vol 1. Academic Press, London, pp 347–384

    Google Scholar 

  • King KL, Cidlowski JA (1998) Cell cycle regulation and apoptosis. Annu Rev Physiol 60:601–617

    Article  CAS  PubMed  Google Scholar 

  • Kirby TJ, Lammerding J (2018) Emerging views of the nucleus as a cellular mechanosensor. Nat Cell Biol 20:373–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kitaoka H, Burri PH, Weibel ER (1996) Development of the human fetal airway tree: analysis of the numerical density of airway endtips. Anat Rec 244:207–213

    Article  CAS  PubMed  Google Scholar 

  • Klagsbrun M (1989) The fibroblast growth factor family: structural and biological properties. Prog Growth Factor Res 1:207–235

    Article  CAS  PubMed  Google Scholar 

  • Klein S, Giancotti FG, Presta M, Albelda SM, Buck CA, Rifkin DB (1993) Basic fibroblast growth factor modulates integrin expression in microvascular endothelial cells. Mol Biol Cell 4:973–982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klingenberg CP (2010) Evolution and development of shape: integrating quantitative approaches. Nat Rev Genet 11:623–635

    Article  CAS  PubMed  Google Scholar 

  • Klingenberg CP, Zaklan SD (2000) Morphological integration between developmental compartments in the drosophila wing. Evolution 54:1273–1285

    CAS  PubMed  Google Scholar 

  • Kloek GP, Casler C (1972) The lung and air-sac system of the common grackle. Auk 89:817–825

    Article  Google Scholar 

  • Knudsen L, Ochs M (2018) The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol 150:661–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch LG, Britton SL (2008) Aerobic metabolism underlies complexity and capacity. J Physiol 586:83–95

    Article  CAS  PubMed  Google Scholar 

  • Koch M, Wehrle-Haller B, Baumgartner S, Spring J, Brubacher D, Chiquet M (1991) Epithelial synthesis of tenascin at tips of growing bronchi and graded accumulation in basement membrane and mesenchyme. Exp Cell Res 194:297–300

    Article  CAS  PubMed  Google Scholar 

  • Kojima S, Blair DF (2004) The bacterial flagellar motor: structure and function of a complex molecular machine. Int Rev Cytol 233:93–134

    Article  CAS  PubMed  Google Scholar 

  • Kooijman SA (1986) What the hen can tell about her eggs: egg development on the basis of energy budgets. J Math Biol 23:163–185

    Article  CAS  PubMed  Google Scholar 

  • Kolomeisky AB (2015) Motor proteins and molecular motors. CRC Press, Boca Raton (FL)

    Book  Google Scholar 

  • Kolte D, McClung JA, Aronow WS (2016) Vasculogenesis and angiogenesis. In: Aronow WS, McClung JA (eds) Translational research in coronary artery disease. Academic Press, Boston, pp 49–65

    Chapter  Google Scholar 

  • Kotton DN, Morrisey EE (2014) Lung regeneration: mechanisms, applications and emerging stem cell populations. Nature Med 20:822–832

    Article  CAS  PubMed  Google Scholar 

  • Kovar J, Sly PD, Willet KE (2002) Postnatal alveolar development of the rabbit. J Appl Physiol 93:629–635

    Article  PubMed  Google Scholar 

  • Kauts ML, Vink CS, Dzierzak E (2016) Hematopoietic (stem) cell development–how divergent are the roads taken? FEBS Lett 590:3975–3986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kristensen JH (1972) Structure and function of crystalline styles of bivalves. Ophelia 10:91–108

    Article  Google Scholar 

  • Krysko DV, Berghe TV, D’Herde K, Vandenabeele K (2008) Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 44:205–221

    Article  CAS  PubMed  Google Scholar 

  • Kuhl M, Sheldahl LC, Park M, Miller JR, Moon RT (2000) The Wnt/Ca2+ pathway: a new vertebrate Wnt signaling pathway takes shape. Trends Genet 16:279–283

    Article  CAS  PubMed  Google Scholar 

  • Kumar VH, Lakshminrusimha S, El Abiad MT, Chess PR, Ryan RM (2005) Growth factors in lung development. Adv Clin Chem 40:261–316

    Article  CAS  PubMed  Google Scholar 

  • Kurz H, Burri PH, Djonov VG (2003) Angiogenesis and vascular remodeling by intussusception: from form to function. News Physiol Sci 18:65–70

    PubMed  Google Scholar 

  • LaBarbera M (1983) Why the wheels won't go. Amer Natur 121:395–408

    Article  Google Scholar 

  • Lacaud C, Robertson S, Pallis J, Kennedy M, Keller G (2001) Regulation of hemangioblast development. Ann N Y Acad Sci 938:96–107

    Article  CAS  PubMed  Google Scholar 

  • Lacaud G, Keller G, Kouskoff V (2004) Tracking mesoderm formation and specification to the hemangioblast in vitro. Trends Cardiovasc Med 14:314–317

    Article  PubMed  Google Scholar 

  • Lambertz M, Bertozzo F, Sander PM (2018) Bone histological correlates for air sacs and their implications for understanding the origin of the dinosaurian respiratory system. Biol Lett 14:20170514. https://doi.org/10.1098/rsbl.2017.0514

    Article  PubMed  PubMed Central  Google Scholar 

  • Lammert E, Cleaver O, Melton D (2001) Induction of pancreatic differentiation by signals from blood vessels. Science 294:564–567

    Article  CAS  PubMed  Google Scholar 

  • Lang C, Conrad L, Iber D (2021) Organ-specific branching morphogenesis. Front Cell Dev Biol 9:671402. https://doi.org/10.3389/fcell.2021.671402

    Article  PubMed  PubMed Central  Google Scholar 

  • Lang C, Conrad L, Michos O (2018) Mathematical approaches of branching morphogenesis. Front Genet 9:673. https://doi.org/10.3389/fgene.2018.00673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lansford R, Rugonyi S (2020) Follow me! A tale of avian heart development with comparisons to mammal heart development. J Cardiovasc Dev Dis 7:8. https://doi.org/10.3390/jcdd7010008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lanza R, Atala A (eds) (2006) Essentials of stem cell biology. Elsevier, Amsterdam

    Google Scholar 

  • Larrivée B, Karsan A (2000) Signaling pathways induced by vascular endothelial growth factor. Int J Mol Med 5:447–545

    PubMed  Google Scholar 

  • Laschke MW, Gu Y, Menger MD (2022) Replacement in angiogenesis research: studying mechanisms of blood vessel development by animalfree in vitro, in vivo and in silico approaches. Front Physiol 13:981161. https://doi.org/10.3389/fphys.2022.981161

    Article  PubMed  PubMed Central  Google Scholar 

  • Lawson AB, Hedrick BP, Echols S, Schachner ER (2021) Anatomy, variation, and asymmetry of the bronchial tree in the African grey parrot (Psittacus erithacus). J Morph 2021:1–19. https://doi.org/10.1002/jmor.21340

    Article  Google Scholar 

  • Lazzaro D, Price M, de Felice M, Di Lauro R (1991) The transcription factor TTF-1 is expressed at the onset of thyroid and lung morphogenesis and in restricted regions of the fetal brain. Development 113:1093–1104

    Article  CAS  PubMed  Google Scholar 

  • Lebeche M, Marpel S, Cardoso WV (1999) Fibroblast growth factor interactions in the developing lung. Mech Dev 86:125–136

    Article  CAS  PubMed  Google Scholar 

  • Lecuit T, Lenne PF (2007) Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat Rev Mol Cell Biol 8:633–644

    Article  CAS  PubMed  Google Scholar 

  • Lecuit T, Lenne PF, Munro E (2011) Force generation, transmission, and integration during cell and tissue morphogenesis. Annu Rev Cell Dev Biol 27:157–184

    Article  CAS  PubMed  Google Scholar 

  • Lee JM, Dedhar S, Kalluri R, Thompson EW (2006) The epithelial-mesenchymal transition: new insights in signaling, development, and disease. J Cell Biol 172:973–981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leith DE (1983) Comparative mammalian respiratory mechanics. Am Rev Respir Dis 128:S77–S82

    CAS  PubMed  Google Scholar 

  • Lengerke C, Daley GQ (2005) Patterning definitive hematopoietic stem cells from embryonic stem cells. Exp Hematol 33:971–979

    Article  CAS  PubMed  Google Scholar 

  • Le Roith D, Karas M (2003) Apoptosis. In: Henry HL, Normann AW (eds) Encyclopedia of hormones. Academic Press, New York, pp 153–156

    Chapter  Google Scholar 

  • Le Roith D, Kavsan VM, Koval AP, Roberts CT (1993) Phylogeny of the insulin-like growth factors (IGFs) and receptors: a molecular approach. Mol Reprod Dev 35:332–338

    Article  Google Scholar 

  • Levin M (2012) Morphogenetic fields in embryogenesis, regeneration, and cancer: non-local control of complex patterning. Bio Systems 109:243–261

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine OR, Mellins RB (1975) Liquid balance in the lung and pulmonary edema. In: Scarpelli D (ed) Pulmonary physiology of the fetus, newborn and child. Lea and Febiger, Philadelphia, pp 239–258

    Google Scholar 

  • Levitzky MG (2013) Pulmonary physiology, 8th edn. McGraw Hill Education, New Yolk

    Google Scholar 

  • Lewallen MA, Burggren WW (2015) Chronic hypoxia and hyperoxia modifies morphology and VEGF concentration of the lungs of the developing chicken (Gallus gallus variant domesticus). Respir Physiol Neurobiol 219:85–94

    Article  CAS  PubMed  Google Scholar 

  • Lewis WH (1947) Mechanics of invagination. Anat Rec 97:139–156

    Article  CAS  PubMed  Google Scholar 

  • Lewontin R (2000) The triple helix: gene, organism, and environment. Harvard University Press, Harvard (MA)

    Google Scholar 

  • Li C, Hu L, Xiao J, Chen H, Li JT, Bellusci S, Delanghe S, Minoo P (2005) Wnt5a regulates shh and Fgf10 signaling during lung development. Dev Biol 287:86–97

    Article  CAS  PubMed  Google Scholar 

  • Li C, Smith SM, Peinado N, Gao F, Li W, Lee MK, Zhou B, Bellusci S, Pryhuber GS, Ho HH, Borok Z, Minoo P (2010) WNT5a-ROR signaling is essential for alveologenesis. Cell 7:384. https://doi.org/10.3390/cells9020384

    Article  CAS  Google Scholar 

  • Li C, Xiao J, Hormi K, Borok Z, Minoo P (2002) Wnt5a participates in distal lung morphogenesis. Dev Biol 248:68–81

    Article  CAS  PubMed  Google Scholar 

  • Li M, Liao L, Tian W (2020) Extracellular vesicles derived from apoptotic cells: an essential link between death and regeneration. Front Cell Dev Biol 2(8):573511. https://doi.org/10.3389/fcell.2020.573511

    Article  Google Scholar 

  • Li S, Winuthayanon W (2017) Oviduct: roles in fertilization and early embryo development. J Endocrinol 232:R1–R26

    Article  CAS  PubMed  Google Scholar 

  • Liberti DC, Kremp MM, Liberti WA, Penkala IJ, Li S, Zhou S, Morrisey EE (2021) Alveolar epithelial cell fate is maintained in a spatially restricted manner to promote lung regeneration after acute injury. Cell Rep 35:109092. https://doi.org/10.1016/j.celrep.2021.10909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lillie FR (1918) The development of the chick, 2nd edn. Holt, New Yolk

    Google Scholar 

  • Lim CT, Zhou EH, Quek ST (2006) Mechanical models for living cells–a review. J Biomech 39:195–216

    Article  CAS  PubMed  Google Scholar 

  • Lim WF, Inoue-Yokoo T, Tan KS, Lai MI, Sugiyama D (2013) Hematopoietic cell differentiation from embryonic and induced pluripotent stem cells. Stem Cell Res Ther 4(3):71. https://doi.org/10.1186/scrt222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lis R, Karrasch CC, Poulos MG, Kunar B, Redmond D, Duran JGB, Badwe CR, Schachterle W, Ginsberg M, Xiang J et al (2017) Conversion of adult endothelium to immunocompetent haematopoietic stem cells. Nature 545:439–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lister AM (2014) Behavioural leads in evolution: evidence from the fossil record. Biol J Linn Soc 112:315–331

    Article  Google Scholar 

  • Little C (1990) The terrestrial invasion: an ecophysiological approach to the origins of land animals: an ecophysiological approach to the origins of land animals. Cambridge University Press, Cambridge

    Google Scholar 

  • Liu Y, Jiang H, Crawford HC, Hogan BLM (2003) Role for ETS domain transcription factors Pea3/erm in mouse lung development. Dev Biol 261:10–24

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Song N, He J, Yu X, Guo J, Jiao X, Ding X, Teng J (2017) Effect of hypoxia on the differentiation and the self-renewal of metanephrogenic mesenchymal stem cells. Stem Cells Internat 2017:7168687. https://doi.org/10.1155/2017/7168687

    Article  CAS  Google Scholar 

  • Locy WA, Larsell O (1916a) The embryology of the bird’s lung based on observations of the domestic fowl. Part II Am J Anat 20:1–44

    Article  Google Scholar 

  • Locy WA, Larsell O (1916b) The embryology of the bird’s lung based on observations of the bronchial tree. Part I Am J Anat 19:447–504

    Article  Google Scholar 

  • Logan CY, Nusse R (2004) The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol 20:781–810

    Article  CAS  PubMed  Google Scholar 

  • Loh KM, van Amerongen R, Nusse R (2016) Generating cellular diversity and spatial form: Wnt signaling and the evolution of multicellular animals. Dev Cell 38:643–655

    Article  CAS  PubMed  Google Scholar 

  • Losa GA (2002) Fractal morphometry of cell complexity. Riv Biol 95:239–258

    PubMed  Google Scholar 

  • Losa GA (2009) The fractal geometry of life. Riv Biol 102:29–59

    PubMed  Google Scholar 

  • Loscertales M, Mikels AJ, Hu JKH, Donahoe PK, Roberts DJ (2008) Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development 135:1365–1376

    Article  CAS  PubMed  Google Scholar 

  • Lü J, Izvolsky KI, Qian J, Cardoso WV (2005) Identification of FGF10 targets in the embryonic lung epithelium during bud morphogenesis. J Biol Chem 280:4834–4841

    Article  PubMed  Google Scholar 

  • Lu P, Sternlicht MD, Werb Z (2006) Comparative mechanisms of branching morphogenesis in diverse systems. J Mammary Gland Biol Neoplasia 11:213–228

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu P, Werb Z (2008) Patterning mechanisms of branched organs. Science 322:1506–1509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lubarsky B, Krasnow MA (2003) Tube morphogenesis: making and shaping biological tubes. Cell 112:19–28

    Article  CAS  PubMed  Google Scholar 

  • Lynch TJ, Anderson PJ, Xie W, Crooke AK, Liu X, Tyler SR, Luo M, Kusner DM, Zhang Y, Neff T et al (2016) Wnt signaling regulates airway epithelial stem cells in adult murine submucosal glands. Stem Cells 34:2758–2771

    Article  CAS  PubMed  Google Scholar 

  • Machado RD (2012) The molecular genetics and cellular mechanisms underlying pulmonary arterial hypertension. Scientifica 2012:106576. https://doi.org/10.6064/2012/106576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeda Y, Davé V, Whitsett JA (2007) Transcriptional control of lung morphogenesis. Physiol Rev 87:219–244

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (1982) A scanning electron microscopic study of the air- and blood capillaries of the lung of the domestic fowl (Gallus domesticus). Experientia 35:614–616

    Article  Google Scholar 

  • Maina JN (1988) Scanning electron microscopic study of the spatial organization of the air- and blood conducting components of the avian lung (Gallus gallus domesticus). Anat Rec 222:145–153

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (1989) A scanning and transmission electron microscopic study of the tracheal air-sac system in a grasshopper (Chrotogonus senegalensis, Kraus)- (orthoptera: Acrididae: Pygomorphinae). Anat Rec 223:393–405

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (1994) Comparative respiratory morphology and morphometry: the functional design of the respiratory systems. In: Gilles R (ed) Advances in comparative and environmental physiology. Springer-Verlag, Berlin, pp 111–232

    Chapter  Google Scholar 

  • Maina JN (1998) The gas exchangers: structure, function, and evolution of the respiratory processes. Springer-Verlag, Heidelberg

    Book  Google Scholar 

  • Maina JN (2000) Comparative respiratory morphology: themes and principles in the design and construction of the gas exchangers. Anat Rec 261:25–44

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2002a) Functional morphology of the vertebrate respiratory systems. Science Publishers Inc, Enfield (NH)

    Google Scholar 

  • Maina JN (2002b) Fundamental structural aspects in the bioengineering of the gas exchangers: comparative perspectives. Adv Anat Embryol Cell Biol 163:1–112

    Article  Google Scholar 

  • Maina JN (2002c) Some recent advances of the study and understanding of the functional design of the avian lung: morphological and morphometric perspectives. Biol Rev 77:97–152

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2002d) Structure, function and evolution of the gas exchangers: comparative perspectives. J Anat 201:281–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maina JN (2003a) A systematic study of the development of the airway (bronchial) system of the avian lung from days 3 to 26 of embryogenesis: a transmission electron microscopic study on the domestic fowl, Gallus gallus variant domesticus. Tissue Cell 35:375–391

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2003b) Developmental dynamics of the bronchial (airway)- and air sac systems of the avian respiratory system from days 3 to 26 of life: a scanning electron microscopic study of the domestic fowl, Gallus gallus variant domesticus. Anat Embryol 207:119–134

    Article  CAS  Google Scholar 

  • Maina JN (2004a) A systematic study of hematopoiesis, vasculogenesis, and angiogensis in the developing avian lung, Gallus gallus variant domesticus. Tissue Cell 36:307–322

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2004b) Morphogenesis of the laminated tripartite cytoarchitectural design of the blood-gas barrier of the avian lung: a systematic electron microscopic study of the domestic fowl, Gallus gallus variant domesticus. Tissue Cell 36:129–139

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2005) The lung-air sac system of birds: development, structure, and function. Springer-Verlag, Berlin

    Google Scholar 

  • Maina JN (2006) Development, structure, and function of a novel respiratory organ, the lung-air sac system of birds: to go where no other vertebrate has gone. Biol Rev 81:545–579

    Article  PubMed  Google Scholar 

  • Maina JN (2007a) Minutialization at its extreme best! The underpinnings of the remarkable strenths of the air and the blood capillaries of the avian lung: a conundrum. Respir Physionl Neurobiol 159:141–145

    Article  CAS  Google Scholar 

  • Maina JN (2007b) Tensegrity principle explains the mechanical strength of the avian lung. Respir Physiol Neurobiol 155:1–10

    Article  CAS  PubMed  Google Scholar 

  • Maina JN (2009) Functional morphology of the avian respiratory system, the lung-air sac system: efficiency built on complexity. Ostrich (J Afric Ornithol) 79:117–132

    Article  Google Scholar 

  • Maina JN (2011) Bioengineering aspects in the design of gas exchangers: comparative evolutionary, morphological, functional, and molecular perspectives. Springer-Verlag, Berlin

    Book  Google Scholar 

  • Maina JN (2012) Comparative molecular developmental aspects of the mammalian- and the avian lungs, and the insectan tracheal system by branching morphogenesis: recent advances and future directions. Front Zool 9:16. https://doi.org/10.1186/1742-9994-9-16

    Article  PubMed  PubMed Central  Google Scholar 

  • Maina JN (2013) Molecular biological aspects of lung development: current status of understanding and future research directions. In: Berhardt LV (ed) Advances in medicine and biology, vol 60. Nova Biomedical, New York, pp 49–87

    Google Scholar 

  • Maina JN (2014) Comparative respiratory physiology: the fundamental mechanisms and the functional designs of the gas exchangers. Open Access Animal Physiol 6:53–66

    Article  Google Scholar 

  • Maina JN (2015a) The design of the avian respiratory system: development, morphology and function. J Ornithol 156:41–63

    Article  Google Scholar 

  • Maina JN (2015b) Structural and biomechanical properties of the exchange tissue of the avian lung. Anat Rec 298:1673–1688

    Article  Google Scholar 

  • Maina JN (2017) Critical appraisal of some factors pertinent to the functional designs of the gas exchangers. Cell Tiss Res 367:747–767

    Article  CAS  Google Scholar 

  • Maina JN, Jimoh SA, Hosie M (2010a) Implicit mechanistic role of the collagen, smooth muscle, and elastic tissue components in strengthening the air- and blood capillaries of the avian lung. J Anat 217:597–608

    Article  PubMed  PubMed Central  Google Scholar 

  • Maina JN, Madan AK (2003) Occurrence and distribution of fibroblast growth factor-2 (FGF-2) in the early development of the avian lung. FASEB J 17(779):468.10A

    Google Scholar 

  • Maina JN, Madan AK, Alison B (2003) Expression of fibroblast growth factor-2 (FGF-2) in early stages (days 3-11) of the development of the avian lung, Gallus gallus variant domesticus. J Anat 203:505–512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maina JN, Nathaniel C (2001) A qualitative and quantitative study of the lung of an ostrich, Struthio camelus. J Exp Biol 204:2313–2330

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, Ramonisi Y, Mashiteng R, Mokae L, Woodward JD (2021) 3D computer reconstruction of the airway and the vascular systems of the lung of the domestic fowl, Gallus gallus variant domesticus. J Appl Math Comput 5:89–104

    Google Scholar 

  • Maina JN, West JB (2005) Thin and strong! The bioengineering dilemma in the structural and functional design of the blood-gas barrier: comparative and evolutionary perspectives. Physiol Rev 85:811–844

    Article  CAS  PubMed  Google Scholar 

  • Maina JN, West JB, Orgeig S, Foot NJ, Daniels CB, Kiama SG, Gehr P, Mühlfeld C, Blank F, Müller L et al (2010b) Recent advances into understanding some aspects of the structure and function of the mammalian- and avian lungs. Physiol Biochem Zool 83:792–807

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN (2017) Development of the airways and the vasculature in lungs of birds. In: Maina JN (ed) The biology of the avian respiratory system: evolution, development, structure and function. Springer, Cham (Switzerland), pp 147–178

    Chapter  Google Scholar 

  • Makanya A, Anagnostopoulou A, Djonov V (2013) Development and remodeling of the vertebrate blood-gas barrier. BioMed Res Internat 2013:101597. https://doi.org/10.1155/2013/101597

    Article  CAS  Google Scholar 

  • Makanya AN, Darawish YE, Kavoi BM, Djonov V (2011a) Spatial and functional relationships between air conduits and blood capillaries in the pulmonary gas exchange tissue of adult and developing chickens. Microsc Res Intern 74:159–169

    Google Scholar 

  • Makanya AN, Djonov V (2008) Developmental and spatial organization of the air conduits in the lung of the domestic fowl Gallus gallus variant domesticus. Microsc Res Tech 71:689–702

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Djonov V (2009) Parabronchial angioarchitecture in developing and adult chickens. J Appl Physiol 106:1959–1969

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Hlushchuk R, Baum O, Velinov N, Ochs M, Djonov V (2007) Microvascular endowment in the developing chicken embryo lung. Am J Physiol Lung Cell Mol Physiol 292:L1136–L1146

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Hlushchuk R, Djonov V (2011b) The pulmonary blood-gas barrier in the avian embryo: inauguration, development and refinement. Respir Physiol Neurobiol 178:30–88

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Hlushchuk R, Duncker HR, Draeger A, Djonov V (2006) Epithelial transformations in the establishment of the blood-gas barrier in the developing chick embryo lung. Dev Dyn 235:68–81

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Kavoi BM, Kihurani DO (2021) Slight volume chages in the do not imply a fundamental change in the structure of the parenchyma. Anat Histol Embryol 50:169–174

    Article  PubMed  Google Scholar 

  • Makanya AN, Koller T, Hlushchuk R, Djonov V (2012) Pre-hatch lung development in the ostrich. Respir Physiol Neurobiol 180:183–192

    Article  CAS  PubMed  Google Scholar 

  • Makanya AN, Stauffer D, Ribatti D, Burri PH, Djonov V (2005) Microvascular growth, development, and remodeling in the embryonic avian kidney: the interplay between sprouting and intussusceptive angiogenic mechanisms. Microsc Res Tech 66:275–288

    Article  CAS  PubMed  Google Scholar 

  • Malhotra GK, Zhao X, Edwards E, Kopp JL, Naramura M, Sander M, Band H, Band V (2014) The role of Sox9 in mouse mammary gland development and maintenance of mammary stem and luminal progenitor cells. BMC Dev Biol 14:47. https://doi.org/10.1186/s12861-014-0047-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mallarino R, Abzhanov A (2012) Paths less travelled: evo-devo approaches to investigating animal morphological evolution. Annu Rev Cell Dev Biol 28:743–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammoto T, Ingber DE (2010) Mechanical control of tissue and organ development. Development 137:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mammoto T, Mammoto A, Ingber DE (2013) Mechanobiology and developmental control. Annu Rev Cell Dev Biol 29:27–61

    Article  CAS  PubMed  Google Scholar 

  • Mandelbrot BB (1977) Fractals: form, chance, and dimension. Freeman, San Francisco

    Google Scholar 

  • Mandelbrot BB (1978) The fractal geometry of trees and other natural phenomena. In: Miles RE, Serra J (eds) Geometrical probability and biological structures, Lecture notes in biomathematics, vol 23. Springer Verlag, Heidelberg, pp 235–250

    Google Scholar 

  • Mandelbrot BB (1989) Fractal geometry: what is it, and what does it do? Proc R Soc Lond A 433:3–16

    Google Scholar 

  • Mani VT, Jeffrey DM, Michael YJ, Richard GL, Jay PD (2009) A three-dimensional model of vasculogenesis. Biomaterials 30:1098–1112

    Article  Google Scholar 

  • Manivannan S, Nelson CM (2012) Dynamics of branched tissue assembly. Stem Cell Res Ther 3:42. https://doi.org/10.1186/scrt133

    Article  PubMed  PubMed Central  Google Scholar 

  • Mario M, Daniele M (2010) Encyclopedia of movement disorders. In: Kompoliti K, Verhagen ML (eds) Encyclopedia of movement disorders. Academic Press, Oxford, pp 91–95

    Chapter  Google Scholar 

  • Martin AC, Goldstein B (2014) Apical constriction: themes and variations on a cellular mechanism driving morphogenesis. Development 141:1987–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martín-Belmonte F, Rodríguez-Fraticelli AE (2009) Acquisition of membrane polarity in epithelial tube formation patterns, signaling pathways, molecular mechanisms, and disease. Int Rev Cell Mol Biol 274:129–182

    Article  PubMed  Google Scholar 

  • Martinsen BJ (2005) Reference guide to the stages of chick heart embryology. Dev Dyn 233:1217–1237

    Article  PubMed  Google Scholar 

  • Matsumoto K, Yoshitomi H, Rossant J, Zaret KS (2001) Liver organogenesis promoted by endothelial cells prior to vascular function. Science 294:559–563

    Article  CAS  PubMed  Google Scholar 

  • Mattiske D, Sommer P, Kidson SH, Hogan BLM (2006) The role of the forkhead transcription factor, Foxc1, in the development of the mouse lacrimal gland. Dev Dyn 235:1074–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maurovich-Horvat P (2017) The whole is more than the sum of its parts–Aristotle. Cardiovasc Imaging 18:294–295

    Google Scholar 

  • Maxwell JC (1860) Illustrations of the dynamical theory of gases, part II. On the process of diffusion of two or more kinds of moving particles among one another. Philos Mag. (4th series) 20:21–37

    Article  Google Scholar 

  • Mazumdar J, O'Brien WT, Johnson RS, LaManna JC, Chavez JC, Klein PS, Simon MC (2010) O2 regulates stem cells through Wnt/β-catenin signalling. Nat Cell Biol 12:1007–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCulley D, Wienhold M, Sun X (2015) The pulmonary mesenchyme directs lung development. Curr Opin Genet Dev 32:98–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGhee GR (2006) The geometry of evolution: adaptive landscapes and theoretical morphospaces. Cambridge University Press, Cambridge (UK)

    Book  Google Scholar 

  • McGowan SE (1992) Extracellular matrix and the regulation of lung development and repair. FASEB J 6:2895–2904

    Article  CAS  PubMed  Google Scholar 

  • McGrath KE, Koniski AD, Malik J, Palis J (2003) Circulation is established in a stepwise pattern in the mammalian embryo. Blood 101:1669–1676

    Article  CAS  PubMed  Google Scholar 

  • McKeehan WL, Wang F, Kan M (1998) The heparan sulfate-fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 59:135–176

    Article  CAS  PubMed  Google Scholar 

  • McLelland J (1989) Anatomy of the lungs and air sacs. In: King AS, McLelland J (eds) Form and function of the avian lung, vol 4. Academic Press, London, pp 221–279

    Google Scholar 

  • McNichols MJ, McNabb FMA (1988) Development of thyroid function and its pituitary control in embryonic and hatchling precocial Japanese quail and altricial ring doves. Gen Comp Endocrin 69:109–118

    Article  Google Scholar 

  • McQualter JL, Bertoncello I (2012) Concise review: deconstructing the lung to reveal its regenerative potential. Stem Cells 30:811–816

    Article  CAS  PubMed  Google Scholar 

  • Merkus PJFM, Ten Have-Opbroek AAW (1996) Human lung growth: a review. Pediatr Pulmonol 21:583–397

    Article  Google Scholar 

  • Metzger RJ, Krasnow MA (1999) Genetic control of branching morphogenesis. Science 284:1635–1639

    Article  CAS  PubMed  Google Scholar 

  • Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meyer VR, Halbeisen M (2006) Warum gibt es in der Natur keine Räder? Biologie in Unserer Zeit 36:120–123

    Article  Google Scholar 

  • Mohyeldin A, Garzón-Muvdi T, Quiñones-Hinojosa A (2010) Oxygen in stem cell biology: a critical component of the stem cell niche. Cell Stem Cell 6:150–161

    Article  Google Scholar 

  • Michael F (1975) Stoic vs peripatetic syllogistic. Arch History Philos 56:99–124

    Google Scholar 

  • Mikels A, Nusse R (2006) Wnts as ligands: processing, secretion and reception. Oncogene 25:7461–7468

    Article  CAS  PubMed  Google Scholar 

  • Miller AM, McWhorter JE (1914) Experiments on the development of blood vessels in the area pellucida and embryonic body of the chick. Anat Rec 8:203–227

    Article  Google Scholar 

  • Miller JR, Hocking AM, Brown JD, Moon RT (1999) Mechanism and function of signal transudation by the Wnt/β-catenin and Wnt/Ca2+ pathways. Oncogene 18:7860–7872

    Article  CAS  PubMed  Google Scholar 

  • Mills KR, Kruep D, Saha MS (1999) Elucidating the origins of the vascular system: a fate map of the vascular endothelial and red blood cell lineages in Xenopus laevis. Dev Biol 209:352–568

    Article  CAS  PubMed  Google Scholar 

  • Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, Tarpley JE, DeRose M, Simmonett WS (1998) FGF-10 is required for both limb and lung development and exhibits striking functional similarities to drosophila branchless. Genes Dev 12:3156–3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minamino T, Imada K, Namba K (2008) Molecular motors of the bacterial flagella. Curr Opin Struct Biol 18:693–701

    Article  CAS  PubMed  Google Scholar 

  • Minoo P, King RJ (1994) Epithelial-mesenchymal interactions in lung development. Annu Rev Physiol 56:13–45

    Article  CAS  PubMed  Google Scholar 

  • Minoo P, Su G, Drum H, Bringas P, Kimura S (1999) Defects in tracheoesophangeal and lung orphogenesis in Nkx2.1 (−/−) mouse embryos. Dev Biol 209:60–71

    Article  CAS  PubMed  Google Scholar 

  • Mitteroecker P, Huttegger SM (2009) The concept of morphospaces in evolutionary and developmental biology: mathematics and metaphors. Biol Theory 4:54–67

    Article  Google Scholar 

  • Mitzner W, Wagner EM (2004) Vascular remodeling in the circulations of the lung. J Appl Physiol 97:1999–2004

    Article  PubMed  Google Scholar 

  • Miura T (2008) Modeling lung branching morphogenesis. Curr Top Dev Biol 81:291–310

    Article  PubMed  Google Scholar 

  • Miura T (2015) Models of lung branching morphogenesis. J Biochem 157:121–127

    Article  CAS  PubMed  Google Scholar 

  • Miura T, Hartmann D, Kinboshi M, Komada M, Ishibashi M, Shiota K (2009) The cyst-branch difference in developing chick lung results from a different morphogen diffusion coefficient. Mech Dev 126:160–172

    Article  CAS  PubMed  Google Scholar 

  • Moon RT, Brown JD, Torres M (1997a) Wnts modulate cell fate and behaviour during vertebrate development. Trends Genet 14:452–162

    Google Scholar 

  • Moon RT, Brown JD, Yang-Snyder JA, Miller JR (1997b) Structurally related receptors and antagonists compete for secreted Wnt ligands. Cell 88:725–728

    Article  CAS  PubMed  Google Scholar 

  • Moorman A, Webb S, Brown NA, Lamers W, Anderson RH (2003) Development of the heart: (1) formation of the cardiac chambers and arterial trunks. Heart 89:806–814

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrisey EE, Cardoso WV, Lane RH, Rabinovitch M, Abman SH, Ai X, Albertine KH, Bland RD, Chapman HA, Checkley W et al (2013) Molecular determinants of lung development. Ann Am Thorac Soc 10:S12–S16

    Article  PubMed  PubMed Central  Google Scholar 

  • Morrisey EE, Hogan BL (2010) Preparing for the first breath: genetic and cellular mechanisms in lung development. Dev Cell 18:8–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mostafa H, Hussein MT, Elnaeim M (2022) Developmental events in the lung of the Japanese quail (Coturnix coturnix japonica): morphological, histochemical and electron-microscopic studies. Microsc Res Tech 2022:1–16. https://doi.org/10.1002/jemt.24225

    Article  CAS  Google Scholar 

  • Moura RS, Carvalho-Correia E, daMota P, Correia-Pinto J (2014) Canonical Wnt signaling activity in early stages of chick lung development. PLoS One 9:e112388. https://doi.org/10.1371/journal.pone.0112388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura RS, Correia-Pinto J (2017) Molecular aspects of avian lung development. In: Maina JN (ed) The biology of the avian respiratory system: evolution, development, structure and function. Springer, Cham, (Switzerland), pp 129–146

    Chapter  Google Scholar 

  • Moura RS, Coutinho-Borges JP, Pacheco AP, daMota PO, Correia-Pinto J (2011) FGF Signaling pathway in the developing chick lung: expression and inhibition studies. PLoS One 6:e17660. https://doi.org/10.1371/journal.pone.0017660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moura RS, Silva-Gonçalves C, Vaz-Cunha P, Correia-Pinto P (2016) Expression analysis of shh signaling members in early stages of chick lung development. Histochem Cell Biol 146:457–466

    Article  CAS  PubMed  Google Scholar 

  • Moura RS, Vaz-Cunha P, Silva-Gonçalves C, Correia-Pinto J (2015) Characterization of miRNA processing machinery in the embryonic chick lung. Cell Tissue Res 362:569–575

    Article  CAS  PubMed  Google Scholar 

  • Müller B (1908) The air sacs of the pigeon. Smithson misc Colls 50:365–414

    Google Scholar 

  • Müller GB, Newman SA (2005) The innovation triad: an EvoDevo agenda. J Exp Zool 304B:487–503

    Article  Google Scholar 

  • Mund SI, Stampanoni M, Schittny JC (2008) Developmental alveolarization of the mouse lung. Dev Dyn 237:2108–2116

    Article  PubMed  Google Scholar 

  • Muraoka RS, Bushdid PB, Brantley DM, Yull FE, Kerr LD (2000) Mesenchymal expression of nuclear factor-kappaβ inhibits epithelial growth and branching in the embryonic chick lung. Dev Biol 225:322–338

    Article  CAS  PubMed  Google Scholar 

  • Nanka O, Grim M (2009) Formation of the vascular bed: a review of its molecular mechanisms and therapeutic implications. Cas Lek Cesk 148:158–163

    CAS  PubMed  Google Scholar 

  • Nasarre P, Potiron V, Drabkin H, Roche J (2010) Guidance molecules in lung cancer. Cell Adhesion and Migration 4:130–145

    Article  PubMed  PubMed Central  Google Scholar 

  • Navis A, Nelson CM (2016) Pulling together: tissue-generated forces that drive lumen morphogenesis. Semin Cell Dev Biol 55:139–147

    Article  PubMed  PubMed Central  Google Scholar 

  • Neufeld G, Cohen T, Gengrinovitch S, Poltorak Z (1999) Vascular endothelial growth factor (VEGF) and its receptors. FASEB J 13:9–22

    Article  CAS  PubMed  Google Scholar 

  • Neumann NM, Perrone MC, Veldhuis JH, Huebner RJ, Zhan H, Devreotes PN, Brodland GW, Ewald AJ (2018) Coordination of receptor tyrosine kinase signaling and interfacial tension dynamics drives radial intercalation and tube elongation. Dev Cell 45:67–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA (2001) Dufferential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn 220:112–121

    Article  CAS  PubMed  Google Scholar 

  • Nice MM (1962) Development of behavior in precocial birds. Trans Linn Soc New York 8:1–211

    Google Scholar 

  • Nicholas TE (1996) Pulmonary surfactant: no mere paint on the alveolar wall. Respirology 1:247–257

    Article  CAS  PubMed  Google Scholar 

  • Nicod LP (2005) Lung defences: an overview. Eur Respir Rev 14(95):45–50

    Article  Google Scholar 

  • Nicolas J, Magli S, Rabbachin L, Sampaolesi S, Nicotra F, Russo L (2020) 3D extracellular matrix mimics: fundamental concepts and role of materials chemistry to influence stem cell fate. Biomacromolecules 21:1968–1994

    Article  CAS  PubMed  Google Scholar 

  • Nicosia RF, Villaschi S (1999) Autoregulation of angiogenesis by cells of the vascular wall. Int Rev Cytol 185:1–43

    CAS  PubMed  Google Scholar 

  • Nimmagadda S, Loganathan PG, Wilting J, Christ B, Huang R (2004) Expression pattern of VEGFR-2 (Quek1) during quail development. Anat Embryol 208:219–224

    Article  CAS  Google Scholar 

  • Niu G, Chen X (2010) Vascular endothelial growth factor as an anti-angiogenic target for cancer therapy. Curr Drug Targets 11:1000–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noden DM (1989) Embryonic origins and assembly of blood vessels. Am Rev Respir Dis 140:1097–1103

    Article  CAS  PubMed  Google Scholar 

  • Nogawa H, Ito T (1995) Branching morphogenesis of embryonic mouse lung epithelium in mesenchyme-free culture. Dev Dent 121:1015–1022

    CAS  Google Scholar 

  • Notter RH (2000) Lung surfactant, basic science and clinical application. Marcel Dekker, New York

    Book  Google Scholar 

  • Nowotschin S, Hadjantonakis AK (2010) Cellular dynamics in the early mouse embryo: from axis formation to gastrulation. Curr Opin Genet Dev 20:420–427. https://doi.org/10.1016/j.gde.2010.05.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nusse R, Varmus HE (1992) Wnt genes. Cell 69:1073–1087

    Article  CAS  PubMed  Google Scholar 

  • Ochoa-Espinosa A, Affolter M (2012) Branching morphogenesis: from cells to organs and back. Cold Spring Harb Perspect Biol 4:a008243. https://doi.org/10.1101/cshperspect.a008243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ochs M, Nyengaard JR, Jung A, Knudsen L, Voigt M, Wahlers T, Richter J, Gundersen HJ (2004) The number of alveoli in the human lung. Am J Respir Crit Care Med 169:120–124

    Article  PubMed  Google Scholar 

  • O'Farrell PH (2015) Growing an embryo from a single cell: a hurdle in animal life. Cold Spring Harbour Perspect Biol 7:a019042. https://doi.org/10.1101/cshperspect.a019042

    Article  Google Scholar 

  • Ogawa M, Fraser S, Fujimoto T, Endoh M, Nishikawa S, Nishikawa SI (2001) Origin of hematopoietic progenitors during embryogenesis. Int Rev Immunol 20:21–44

    Article  CAS  PubMed  Google Scholar 

  • Ohuchi H, Hori Y, Yamasaki M, Harada H, Sekine K, Kato S, Itoh N (2000) FGF-10 acts as a major ligand for FGF receptor 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277:643–649

    Article  CAS  PubMed  Google Scholar 

  • Okubo T, Hogan BLM (2004) Hyperactive Wnt signaling changes the developmental potential of embryonic lung endoderm. J Biol 3:11–31

    Article  PubMed  PubMed Central  Google Scholar 

  • Orgeig S, Bernhard W, Biswas SC, Daniels CB, Hall SB, Hetz SK, Lang CJ, Maina JN, Panda AK, Perez-Gill J et al (2007) The anatomy, physical, and physiology of gas exchange surfaces: is there a universal function for pulmonary surfactant in animal respiratory structures? Integr Comp Biol 47:610–627

    Article  PubMed  Google Scholar 

  • Ornitz DM, Itoh N (2001) Fibroblast growth factors. Genome Biol 2:REVIEWS3005. https://doi.org/10.1186/gb-2001-2-3-reviews3005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ornitz DM, Itoh N (2015) The fibroblast growth factor signaling pathway. Dev Biol 4:215–266

    CAS  Google Scholar 

  • Ornitz D, Sannes P (2006) Fibroblast growth factors. In: Lourent GJ, Shapiro SD (eds) Encyclopedia of respiratory medicine. Academic Press, Oxford, pp 210–213

    Chapter  Google Scholar 

  • Ortega S, Ittmann M, Tsang SH, Ehrlich M, Basilico C (1998) Neuronal defects and delayed wound healing in mice lacking fibroblast growth factor 2. Proc Natl Acad Sci U S A 95:5672–5677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oster G, Wang H (2003) Rotary protein motors. Trends Cell Biol 13:114–121

    Article  CAS  PubMed  Google Scholar 

  • Owen J (1980) Filter-feeding: feeding strategy. University of Chicago Press, Chicago (IL)

    Google Scholar 

  • Pabon JE, Findley WE, Gibbons WE (1989) The toxic effect of short exposures to the atmospheric oxygen concentration on early mouse embryonic development. Fertil Steril 51:896–900

    Article  PubMed  Google Scholar 

  • Padian K (1995) Form and function: the evolution of a dialectic. In: Thomason JJ (ed) Functional morphology and vertebrate paleontology. Cambridge University Press, Cambridge, pp 264–277

    Google Scholar 

  • Palmer MA, Nelson CM (2017) Epithelial tube fusion as a mechanism for the development of complex lumen-containing organs. Trends Dev Biol 10:57–69

    Google Scholar 

  • Palmer MA, Nelson CM (2020) Fusion of airways during avian lung development constitutes a novel mechanism for the formation of continuous lumena in multicellular epithelia. Dev Dyn 249:1318–1333

    Article  CAS  PubMed  Google Scholar 

  • Panchision DM (2009) The role of oxygen in regulating neural stem cells in development and disease. J Cell Physiol 220:562–568

    Article  CAS  PubMed  Google Scholar 

  • Pansky B (1982) Review of medical embryology. McGraw-Hill, New York

    Google Scholar 

  • Pardanaud L, Luton D, Prigent M, Bourcheix LM, Catala M, Dieterlen-Lièvre F (1996) Two distinct endothelial lineages in ontogeny, one of them related to hemopoiesis. Development 122:1363–1371

    Article  CAS  PubMed  Google Scholar 

  • Pardanaud L, Yasiine F, Dieterlen-Lièvre F (1989) Relationship between vasculogenesis, angiogenesis, and haemopiesis during avian ontogeny. Development 105:473–485

    Article  CAS  PubMed  Google Scholar 

  • Parera MC, van Dooren M, van Kempen M, de Krijger R, Grosveld F, Tibboel D, Rottier R (2005) Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol 288:L141–L149

    Article  CAS  PubMed  Google Scholar 

  • Park WY, Miranda B, Lebeche D, Hashimoto G, Cardoso WV (1998) FGF-10 is a chemotactic factor for distal epithelial buds during lung development. Dev Biol 201:125–134

    Article  CAS  PubMed  Google Scholar 

  • Parsons JT, Horwitz AR, Schwartz MA (2010) Cell adhesion: integrating cytoskeletal dynamics and cellular tension. Nature Rev Mol Cell Biol 11:633–643

    Article  CAS  Google Scholar 

  • Pascal R, Pross A, Sutherland JD (2013) Towards an evolutionary theory of the origin of life based on kinetics and thermodynamics. Open Biol 3:130156. https://doi.org/10.1098/rsob.130156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neuro-Oncol 50:1–15

    Article  CAS  Google Scholar 

  • Patan S (2004) Vasculogenesis and angiogenesis. Cancer Treat Res 117:3–32

    Article  CAS  PubMed  Google Scholar 

  • Patan S (2021) Peri-endothelial cells, the versatile players in the alternating circular events of vascular growth and differentiation, a switch guided by lycat and cloche, fine tuning angiogenic responsiveness beyond linear hypoxia stimulation. Acad Letts 2418. https://doi.org/10.20935/AL2418

  • Pattle RE (1978) Lung surfactant and lung lining in birds. In: Piiper J (ed) Respiratory function in birds, adult and embryonic. Springer-Verlag, Berlin, pp 23–32

    Chapter  Google Scholar 

  • Pauling MH, Vu TH (2004) Mechanisms and regulation of lung vascular development. Curr Top Dev Biol 64:73–99

    Article  CAS  PubMed  Google Scholar 

  • Pèault B, Thiery JP, Le Douarin NM (1983) A surface marker for the hemopoietic and endothelial cell lineage in the quail species defined by a monoclonal antibody. Proc Natl Acad Sci U S A 80:2976–2980

    Article  PubMed  PubMed Central  Google Scholar 

  • Pearl EJ, Li J, Green JBA (2017) Cellular systems for epithelial invagination. Phil Trans R Soc (Lond). B 372:20150526. https://doi.org/10.1098/rstb.2015.0526

    Article  CAS  Google Scholar 

  • Pearson JT, Seymour RS, Baudinette RV, Runciman S (2002) Respiration and energetics of embryonic development in a large altricial bird, the Australian pelican (Pelecanus conspicillatus). J Exp Biol 205:2925–2933

    Article  PubMed  Google Scholar 

  • Penaloza C, Lin L, Lockshin RA, Zakeri Z (2006) Cell death in development: shaping the embryo. Histochem Cell Biol 126:149–158

    Article  CAS  PubMed  Google Scholar 

  • Penaloza C, Orlanski S, Ye Y, Entezari-Zaher T, Javdan M, Zakeri Z (2008) Cell death in mammalian development. Curr Pharm Des 14:184–196

    Article  CAS  PubMed  Google Scholar 

  • Peng T, Morrisey EE (2013) Development of the pulmonary vasculature: current understanding and concepts for the future. Pulm Circ 3:176–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pepicelli CV, Lewis P, McMahon A (1998) Sonic hedgehog regulates branching morphogenesis in the mammalian lung. Curr Biol 8:1083–1086

    Article  CAS  PubMed  Google Scholar 

  • Perelman RH, Engle MJ, Farrell PM (1981) Perspectives on fetal lung development. Lung 159:53–80

    Article  CAS  PubMed  Google Scholar 

  • Perl AKT, Hokuto I, Impagnatiello MA, Christofori G, Whitsetta GA (2003) Temporal effects of Sprouty on lung morphogenesis. Dev Biol 258:154–168

    Article  CAS  PubMed  Google Scholar 

  • Perl AK, Wert SE, Nagy A, Lobe CG, Whitsett JA (2002) Early restriction of peripheral and proximal cell lineages during formation of the lung. Proc Natl Acad Sci U S A 99:10482–10487

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perl AK, Whitsett JA (1999) Molecular mechanisms controlling lung morphogenesis. Clin Genet 56:14–27

    Article  CAS  PubMed  Google Scholar 

  • Perry SF (1998) Lungs: comparative anatomy, functional morphology, and evolution. In: Gans C, Gaunt AS (eds) Biology of the reptilia, vol 19. Society for the Study of Amphibians and Reptiles, Ithaca (NY), pp 1–92

    Google Scholar 

  • Perry SF, Duncker HR (1978) Lung architecture, volume and static mechanics in five species of lizards. Respir Physiol 34:61–81

    Article  CAS  PubMed  Google Scholar 

  • Perry SF, Duncker HR (1980) Interrelationship of static mechanical factors and anatomical structure in lung ventilation. J Comp Physiol 138:321–334

    Article  Google Scholar 

  • Perry SF, Lambertz M, Schmitz A (2019) Respiratory biology of animals: evolutionary and functional morphology. Oxford University Press, Oxford

    Book  Google Scholar 

  • Perry SF, Sander M (2004) Reconstructing the evolution of the respiratory apparatus in tetrapods. Respir Physiol Neurobiol 144:125–139

    Article  PubMed  Google Scholar 

  • Peters K, Werner S, Liao X, Wert S, Whitsett J, Williams L (1994) Targeted expression of a dominant negative FGF receptor blocks branching morphogenesis and epithelial differentiation of the mouse. EMBO J 13:3296–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petridou N, Spiró Z, Heisenberg CP (2017) Multiscale force sensing in development. Nat Cell Biol 19:581–588

    Article  CAS  PubMed  Google Scholar 

  • Petrova TV, Makinen T, Alitalo K (1999) Signaling via vascular endothelial growth factor receptors. Exp Cell Res 253:117–130

    Article  CAS  PubMed  Google Scholar 

  • Petrucci RH, Harwood WS, Herring FG (2002) General chemistry, 8th edtn. Prentice-Hall, Upper Saddle River (NJ)

    Google Scholar 

  • Pfeifer M, Polakis P (2000) Wnt signaling in oncogenesis and embryogenesis: a look outside the nucleus. Science 287:1606–1609

    Article  Google Scholar 

  • Phelps CA, Lai SC, Mu D (2018) Roles of thyroid transcription factor 1 in lung cancer biology. Vitam Horm 106:517–544

    Article  CAS  PubMed  Google Scholar 

  • Pilot F, Lecuit T (2005) Compartmentalized morphogenesis in epithelia: from cell to tissue shape. Dev Dyn 232:685–694

    Article  CAS  PubMed  Google Scholar 

  • Plosa EJ, Young LR, Gulleman PM, Polosukhin VV, ZaynagetdinovR BJT, Im AM, van der Meer R, Gleaves LA, Bulus N et al (2004) Epithelial β1 integrin is required for lung branching morphogenesis and alveolarization. Development 141:4751–4762

    Article  Google Scholar 

  • Podkalicka P, Stępniewski J, Mucha O, Kachamakova-Trojanowska N, Dulak J, Łoboda A (2020) Hypoxia as a driving force of pluripotent stem cell reprogramming and differentiation to endothelial cells. Biomol Ther 10:1614. https://doi.org/10.3390/biom10121614

    Article  CAS  Google Scholar 

  • Pogoriler J, Husain AN (2014) Pulmonary development and pediatric lung diseases. In: McManus LM, Mitchell RN (eds) Pathobiology of human disease. Academic Press, San Diego, pp 2575–2587

    Chapter  Google Scholar 

  • Polakis P (2012) Wnt signaling in cancer. Cold Spring Harb Perspect Biol 4:a008052. https://doi.org/10.1101/cshperspect.a008052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole TJ (1994) Cellular and molecular biology of endothelial cell differentiation during embryonic development. In: Maragoudakis ME, Gullino PM, Lelkes PI (eds) Angiogenesis. NATO ASI series (series a: life sciences), 263. Springer, Boston (MA). https://doi.org/10.1007/978-1-4757-9188-4_2

    Chapter  Google Scholar 

  • Poole TJ, Coffin JD (1989) Vasculogenesis and angiogenensis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251:224–231

    Article  CAS  PubMed  Google Scholar 

  • Poole TJ, Coffin JD (1991) Morphogenetic mechanisms in avian vascular development. In: Feinberg RN, Sherer GK, Auerbach R (eds) The development of the vascular system, vol 14. Karger S, Basel, pp 25–36

    Google Scholar 

  • Poole TJ, Finkelstein EB, Cox CM (2001) The role of FGF and VEGF in angioblast induction and migration during vascular development. Dev Dyn 220:1–17

    Article  CAS  PubMed  Google Scholar 

  • Powell FL (2015) Respiration. In: Scanes CG (ed) Sturkie’s avain physiology, 6th edn. Elsevier, Amsterdam, pp 301–336

    Chapter  Google Scholar 

  • Prado-Lopez S, Conesa A, Arminan A, Martinez-Losa M, Escobedo-Lucea C, Gandia C, Tarazona S, Melguizo D, Blesa D, Montaner D et al (2010) Hypoxia promotes efficient differentiation of human embryonic stem cells to functional endothelium. Stem Cells 28:407–418

    Article  CAS  PubMed  Google Scholar 

  • Price AP, England KA, Matson AM, Blazar BR, Panoskaltsis-Mortari A (2010) Development of a decellularized lung bioreactor system for bioengineering the lung: the matrix reloaded. Tissue Engineer A 16:2581–2591

    Article  CAS  Google Scholar 

  • Prigogine I, Stengers I (1984) Order out of chaos: Man's new dialogue with nature. Flamingo, London

    Google Scholar 

  • Radinsky LB (1987) The evolution of vertebrate design. University of Chicago Press, Chicago

    Book  Google Scholar 

  • Ralston A and Shaw K (2008) Gene expression regulates cell differentiation. Nature Ed 1, 127. https://www.nature.com/scitable/topicpage/gene-expression-regulates-cell-differentiation-931/. Accessed on 10–07–22

  • Ramakrishnan AB, Cadigan KM (2017) Wnt target genes and where to find them. F1000Res 6:746. https://doi.org/10.12688/f1000research.11034.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramasamy SK, Mailleux AA, Gupte VV, Mata F, Sala FG, Veltmaat JM, Del Moral PM, De Langhe S, Parsa S, Kelly LK et al (2007) FGF10 dosage is critical for the amplification of epithelial cell progenitors and for the formation of multiple mesenchymal lineages during lung development. Dev Biol 307:237–247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramsbottom SA, Pownall ME (2016) Regulation of hedgehog signalling inside and outside the cell. J Dev Biol 4:23. https://doi.org/10.3390/jdb4030023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Randall DJ, Burggren WW, Farrell AP, Haswell MS (1981) The evolution of air-breathing in vertebrates. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Raś M, Iwan D, Kamiński MJ (2018) The tracheal system in postembryonic development of holometabolous insects: a case study using mealworm beetle. J Anat 232:997–1015

    Article  PubMed  PubMed Central  Google Scholar 

  • Rawlins EL, Hogan BL (2006) Epithelial stem cells of the lung: privileged few or opportunities for many? Development 133:2455–2465

    Article  CAS  PubMed  Google Scholar 

  • Ray HJ, Niswander L (2012) Mechanisms of tissue fusion during development. Development 139:1701–1711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ray SD, Mehendale HM (2005) Apoptosis. In: Wexler P (ed) Encyclopedia of toxicology, 2nd edn. Elsevier, New York, pp 153–167

    Chapter  Google Scholar 

  • Reagan FP (1916) A further study of the origin of blood vascular tissues in chemically treated teleost embryos, with special reference to haematopoiesis in the anterior mesenchyme and in the heart. Anat Rec 10:99–118

    Article  Google Scholar 

  • Reidy KJ, Rosenblum ND (2009) Cell and molecular biology of kidney development. Semin Nephrol 29:321–337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribatti D, Pezzella F (2021) Overview on the different patterns of tumor vascularization. Cell 10:639. https://doi.org/10.3390/cells10030639

    Article  CAS  Google Scholar 

  • Ricklefs RE, Starck JM (1998) Embryonic growth and development. In: Starck JM, Ricklefs RE (eds) Avian growth and development, evolution within the altricial-precocial spectrum. Oxford University Press, New York, pp 31–58

    Google Scholar 

  • Risau W (1997) Mechanisms of angiogenesis. Nature 386:671–674

    Article  CAS  PubMed  Google Scholar 

  • Risau W, Flamme I (1995) Vasculogenesis. Annu Rev Cell Dev Biol 11:73–91

    Article  CAS  PubMed  Google Scholar 

  • Roca-Cusachs P, Conte V, Trepat X (2017) Quantifying forces in cell biology. Nat Cell Biol 19:742–751

    Article  CAS  PubMed  Google Scholar 

  • Rockich BE, Hryca SM, Shih HP, Nagy MS, Ferguson MAH, Kopp JL, Sander M, Wellik DM, Spence JR (2013) Sox9 plays multiple roles in the lung epithelium during branching morphogenesis. Proc Natl Acad Sci U S A 110:E4456–E4464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rogers KW, Schier AF (2011) Morphogen gradients: from generation to interpretation. Annu Rev Cell Dev Biol 27:377–407

    Article  CAS  PubMed  Google Scholar 

  • Roman J (1997) Cellular mechanisms of lung development. In: Fishman A (ed) Pulmonary diseases and disorders. McGraw Hill, New York, pp 73–89

    Google Scholar 

  • Román-Fernández A, Bryant DM (2016) Complex polarity: building multicellular tissues through apical membrane traffic. Traffic 17:1244–1261

    Article  PubMed  Google Scholar 

  • Romani P, Valcarcel-Jimenez L, Frezza C, Dupont S (2021) Crosstalk between mechanotransduction and metabolism. Nat Rev Mol Cell Biol 22:22–38

    Article  CAS  PubMed  Google Scholar 

  • Romanoff AL (1960) The avian embryo. Macmillan, New York

    Google Scholar 

  • Rosenquist GC (1970) The origin and movement of prelung cells in the chick embryo as determined by radioautographic mapping. Embryol Exp Morph 24:497–509

    CAS  Google Scholar 

  • Ross MJ (1899) Special structural features in the air-sacs of birds. Trans Amer Micr Soc 20:29–40

    Article  Google Scholar 

  • Roth-Kleiner M, Post M (2003) Genetic control of lung development. Biol Neonate 84:83–88

    Article  PubMed  Google Scholar 

  • Rubin LP, Kovacs CS, De Paepe ME, Tsai SW, Torday JS, Kronenberg HM (2004) Arrested pulmonary alveolar cytodifferentiation and defective surfactant synthesis in mice missing the gene for parathyroid hormone-related protein. Dev Dyn 230:278–289

    Article  CAS  PubMed  Google Scholar 

  • Rudnick D (1933) Developmental capacities of chick lung in chorioallantoic grafts. J Exp Zool 66:125–154

    Article  Google Scholar 

  • Runciman S, Seymour RS, Baudinette RV, Pearson JT (2005) An allometric study of lung morphology during development in the Australian pelican, Pelicanus conspicillatus, from embryo to adult. J Anat 207:365–380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sabin FR (1917) Preliminary note on the differentiation of angioblasts and the method by which they produce blood vessels, blood plasma and red blood cells as seen in the living chick. Anat Rec 13:199–204

    Article  Google Scholar 

  • Sabin FR (1920) Studies on the origin of blood vessels and of red blood corpuscles as seen in the living blastoderm of chicks during the second day of incubation. Contrib Embryol 36:213–261

    Google Scholar 

  • Sadler TW (2010) The embryologic origin of ventral body wall defects. Semin Pediatr Surg 19:209–214

    Article  PubMed  Google Scholar 

  • Sagai T, Amano T, Maeno A, Kimura T, Nakamoto M, Takehana Y, Naruse K, Okada N, Kiyonari H, Shiroishi T (2017) Evolution of shh endoderm enhancers during morphological transition from ventral lungs to dorsal gas bladder. Nat Commun 8:14300. https://doi.org/10.1038/ncomms14300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sagai T, Amano T, Tamura M, Mizushina Y, Sumiyama K, Shiroishi T (2009) A cluster of three long-range enhancers directs regional shh expression in the epithelial linings. Development 136:1665–1674

    Article  CAS  PubMed  Google Scholar 

  • Sahasrabudhe N, Gosney J, Hasleton P (2000) The normal lung: histology, embryology, development, aging and function. In: Hasleton P, Flieder D (eds) Spencer's pathology of the lung. Cambridge University Press, Cambridge, pp 1–40

    Google Scholar 

  • Sakaue H, Konishi M, Ogawa W, Asaki T, Mori T, Yamasaki M, Takata M, Ueno H, Kato S, Kasuga M et al (2002) Requirement of fibroblast growth factor 10 in development of white adipose tissue. Genes Dev 16:908–912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakiyama J-I, Yamagishi A, Kuroiwa A (2000) Coordinated expression of hoxb genes and signaling molecules during development of chick respiratory tract. Dev Biol 227:12–27

    Article  CAS  PubMed  Google Scholar 

  • Sakiyama J-I, Yamagishi A, Kuroiwa A (2003) Tbx-Fgf10 system controls lung bud formation during chicken embryonic development. Development 130:1225–1234

    Article  CAS  PubMed  Google Scholar 

  • Sander PM, Christian A, Clauss M, Fechner R, Gee CT, Griebeler EM, Gunga HC, Hummel J, Mallison H, Perry SF et al (2011) Biology of the sauropod dinosaurs: the evolution of gigantism. Biol Rev 86:117–155

    Article  PubMed  Google Scholar 

  • Sanghvi-Shah R, Weber GF (2017) Intermediate filaments at the junction of mechanotransduction, migration, and development. Front Cell Dev Biol 5:81. https://doi.org/10.3389/fcell.2017.00081

    Article  PubMed  PubMed Central  Google Scholar 

  • Sano H, Kuroki Y (2005) The lung collectins, SP-A and SP-D, modulate pulmonary innate immunity. Mol Immunol 42:279–287

    Article  CAS  PubMed  Google Scholar 

  • Saraste A, Pulkki K (2000) Morphologic and biochemical hallmarks of apoptosis. Cardiovasc Res 45:528–537

    Article  CAS  PubMed  Google Scholar 

  • Sawyer JM, Harrell JR, Shemer G, Sullivan-Brown J, Roh-Johnson M, Goldstein B (2010) Apical constriction: a cell shape change that can drive morphogenesis. Dev Biol 341:5–19

    Article  CAS  PubMed  Google Scholar 

  • Scaltsas T (1990) Is a whole identical to its parts? Mind 99:583–598

    Article  Google Scholar 

  • Scanes CG, Witt J, Ebeling M, Schaller S, Baier V, Bone AJ, Preuss TG, Heckmann D (2022) Quantitative comparison of avian and mammalian physiologies for parameterization of physiologically based kinetic models. Front Physiol 13:858386. https://doi.org/10.3389/fphys.2022.858386

    Article  PubMed  PubMed Central  Google Scholar 

  • Scarpelli EM (1988) Surfactants and the lining of the lung. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Schatteman GC (2004) Adult bone marrow-derived hemangioblasts, endothelial cell progenitors, and EPCs. Curr Top Dev Biol 64:141–180

    Article  CAS  PubMed  Google Scholar 

  • Schatteman GC, Awad O (2004) Hemangioblasts, angioblasts, and adult endothelial cell progenitors. Anat Rec 276:13–21

    Article  Google Scholar 

  • Scheid P (1979) Mechanisms of gas exchange in bird lungs. Rev Physiol Biochem Pharmacol 86:137–186

    Article  CAS  PubMed  Google Scholar 

  • Scheid P, Piiper J (1989) Respiratory mechanics and air flow in birds. In: King AS, McLelland J (eds) Form and function in birds, vol 4. Academic Press, London, pp 369–391

    Google Scholar 

  • Schepers GE, Teasdale RD, Koopman P (2002) Twenty pairs of sox: extent, homology, and nomenclature of the mouse and human sox transcription factor gene families. Dev Cell 3:167–170

    Article  CAS  PubMed  Google Scholar 

  • Schittny J (2017) Development of the lung. Cell Tissue Res 367:427–444

    Article  PubMed  PubMed Central  Google Scholar 

  • Schittny J, Burri PH (2004) Morphogenesis of the mammalian lung: aspects of structure and extracellular matrix. In: Massaro DJ, Massaro GC, Chambon P (eds) Lung development and regeneration. Marcel Dekker Inc, New York, pp 275–316

    Google Scholar 

  • Schittny JC, Burri PH (2008) Development and growth of the lung. In: Fishman AP, Elias JA, Fishman JA, Grippi MA, Kaiser LR, Senior RM (eds) Fishman’s pulmonary diseases and disorders, vol 1. McGraw-Hill, New York, pp 91–114

    Google Scholar 

  • Schittny JC, Mund SI (2008) A re-examination of the maturation of the alveolar septa revealed that microvascular maturation takes place in parallel to alveolarization. Am J Respir Crit Care Med 177:A317

    Google Scholar 

  • Schittny JC, Mund SI, Stampanoni M (2008) Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol 294:L246–L254

    Article  CAS  PubMed  Google Scholar 

  • Schittny J, Djonov V, Fine A, Burri PH (1998) Programmed cell death contributes postnatal lung development. Am J Respir Cell Mol Biol 18:786–793

    Article  CAS  PubMed  Google Scholar 

  • Schliwa M (ed) (2003) Molecular motors. Wiley, Darmstadt

    Google Scholar 

  • Scholtz G (2008) Scarab beetles at the interface of wheel invention in nature and culture? Contr Zool 77:139–148

    Article  Google Scholar 

  • Schreiber A, Gimbel S (2010) Evolution and the second law of thermodynamics: effectively communicating to non-technicians. Evo Edu Outreach 3:99–106

    Article  Google Scholar 

  • Schwenk K (2000) Feeding. Form, function and evolution in tetrapod vertebrates. Academic Press, San Diego

    Google Scholar 

  • Seghezzi G, Patel S, Ren CJ, Gualandris A, Pintucci G, Robbins ES, Shapiro RL, Galloway AC, Rifkin DB, Mignatti P (1998) Fibroblast growth factor-2 (FGF-2) induces vascular endothelial growth factor (VEGF) expression in the endothelial cells of forming capillaries: an autocrine mechanism contributing to angiogenesis. J Cell Biol 141:1659–1673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sekine K, Ohuchi H, Fujiwara M, Yamasa K, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N et al (1999) FGF-10 is essential for limb and lung formation. Nat Gent 21:138–141

    Article  CAS  Google Scholar 

  • Selenka E (1866) Beitrag zur Entwickelungsgeschichte der Luffsache des Huhn. Zeitsehr f wiss Zo 51:178–182

    Google Scholar 

  • Seller TJ (ed) (1987) Bird respiration, vol I and II. CRC Press, Boca Raton (FL)

    Google Scholar 

  • Sellier N, Brillard JP, Dupuy V, Bakst MR (2006) Comparative staging of embryo development in chicken, Turkey, duck, goose, Guinea fowl, and japanese quail assessed from five hours after fertilization through seventy-two hours of incubation. J Appl Poult Res 15:219–228

    Article  Google Scholar 

  • Semenov MV, Habas R, MacDonald BT (2007) Noncanonical Wnt signaling pathways. Cell 131:1378. https://doi.org/10.1016/j.cell.2007.12.011

    Article  PubMed  Google Scholar 

  • Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH (2005) Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 132:35–47

    Article  CAS  PubMed  Google Scholar 

  • Seymour RS, Runciman S, Baudinette RV (2008) Development of maximum metabolic rate and pulmonary diffusing capacity in the superprecocial Australian brush Turkey Alectura lathami: an allometric and morphometric study. Comp Biochem Physiol A Mol Integr Physiol 150:169–175

    Article  PubMed  Google Scholar 

  • Seymour RS, Runciman S, Baudinette RV, Pearson JT (2004) Developmental allometry of pulmonary structure and function in the altricial Australian pelican Pelecanus conspicillatus. J Exp Biol 207:2663–2669

    Article  PubMed  Google Scholar 

  • Shah MM, Sampogna RV, Sakurai H, Bush KT, Nigam SK (2004) Branching morphogenesis and kidney disease Development 131:1449–1462

    CAS  PubMed  Google Scholar 

  • Shalaby F, Rossant J, Yamaguchi TP, Gertsenstein M, Wu XF, Breitman M, Schuh AC (1995) Failure of blood-Island formation and vasculogenesis in Flk-1-deficient mice. Nature 376:62–66

    Article  CAS  PubMed  Google Scholar 

  • Shannon JM, Hyatt BA (2004) Epithelial-mesenchymal interactions in the developing lung. Annu Rev Physiol 66:625–645

    Article  CAS  PubMed  Google Scholar 

  • Shannon JM, Nielsen LD, Gebb SA, Randell SH (1998) Mesenchyme specifies epithelial differentiation in reciprocal recombinants of embryonic lung and trachea. Dev Dyn 212:482–494

    Article  CAS  PubMed  Google Scholar 

  • Shook D, Keller R (2003) Mechanisms, mechanics and function of epithelial-mesenchymal transitions in early development. Mech Dev 120:1351–1383

    Article  CAS  PubMed  Google Scholar 

  • Short KM, Smyth IM (2016) Quantification of developmental branching morphogenesis. In: Little MH (ed) Kidney development, disease, repair and regeneration. Elsevier Inc., New York, pp 57–65

    Chapter  Google Scholar 

  • Shimoda LA (2006) Pulmonary circulation. In: Laurent GJ, Shapiro SD (eds) Encyclopedia of medicine. Elsevier Ltd, New York, pp 537–544

    Google Scholar 

  • Shu W, Jiang YQ, Lu MM, Morrisey EE (2002) Wnt7b regulates mesenchymal proliferation and vascular development in the lung. Development 129:4831–4842

    Article  CAS  PubMed  Google Scholar 

  • Schuger L, Skubitz AP, Gilbride K, Mandel R, He L (1996) Laminin and heparan sulfate proteoglycan mediate epithelial cell polarization in organotypic cultures of embryonic lung cells: evidence implicating involvement of the inner globular region of laminin beta 1 chain and the heparan sulfate groups of heparan sulfate proteoglycan. Dev Biol 179:264–273

    Article  CAS  PubMed  Google Scholar 

  • Shum H (2019) Microswimmer propulsion by two steadily rotating helical flagella. Micromachines 10(1):65. https://doi.org/10.3390/mi10010065

    Article  PubMed  PubMed Central  Google Scholar 

  • Sigurbjörnsdóttir S, Mathew R, Leptin M (2014) Molecular mechanisms of de novo lumen formation. Nat Rev Mol Cell Biol 15:665–676

    Article  PubMed  Google Scholar 

  • Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9:285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simonet WS, DeRose ML, Bucay N, Nguyen HQ, Wert SE, Zhou L, Ulich TR, Thomason A, Danilenko DM, Whitsett JA (1995) Pulmonary malformation in transgenic mice expressing human keratinocyte growth factor in the lung. Proc Natl Acad Sci U S A 92:12461–12465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Skoda AM, Simovic D, Karin V, Kardum V, Vranic S, Serman L (2018) The role of the hedgehog signaling pathway in cancer: a comprehensive review. Bosnian J Basic Med Sci 18:8–20

    Article  CAS  Google Scholar 

  • Slack J (2021) Stem cells: a very short introduction, 2nd edn. Oxford University Press, Oxford (UK)

    Book  Google Scholar 

  • Sorokin SP (1970) The cells of the lungs. In: Nettesheim P, Hanna MG, Deatherage JW (eds) Morphology of experimental respiratory carcinogenesis. Proceedings of a Biology Division, Oak Ridge National Laboratory Conference; Gatlinburg (TN), pp 3–43

    Google Scholar 

  • Sorokin SP (1977) The respiratory system. In: Weiss L, Greep RD (eds) Histology. McGraw Hill Book Company, New York, pp 765–782

    Google Scholar 

  • Spencer H, Shorter RG (1962) Cell turnover in pulmonary tissues. Nature 194:880. https://doi.org/10.1038/194880a0

    Article  CAS  PubMed  Google Scholar 

  • Spicer JI, Burggren WW (2003) Development of physiological regulatory systems: altering the timing of crucial events. Zoology 106:91–99

    Article  PubMed  Google Scholar 

  • Spinks L (2003) Friedrich Nietzsch. Taylor and Francis, Boca Raton

    Book  Google Scholar 

  • Spooner BS, Wessells NK (1970) Mammalian lung development: interactions in primordium formation and bronchial morphogenesis. J Exp Zool 175:445–454

    Article  CAS  PubMed  Google Scholar 

  • Spurlin JW, Nelson CM (2017) Building branched tissue structures: from single cell guidance to coordinated construction. Philos Trans R Soc Lond Ser B Biol Sci 372:20150527. https://doi.org/10.1098/rstb.2015.0527

    Article  CAS  Google Scholar 

  • Spurlin JW, Siedlik MJ, Nerger BA, Pang MF, Jayaraman S, Zhang R, Nelson CM (2019) Mesenchymal proteases and tissue fluidity remodel the extracellular matrix during airway epithelial branching in the embryonic avian lung. Development 146:dev175257. https://doi.org/10.1242/dev.175257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stabellini G, Locci P, Calvitti M, Evangelisti R, Marinucci L, Bodo M, Carusio A, Canaider S, Carinci P (2001) Epithelial-mesenchymal interactions and lung branching morphogenesis, role of polyamines and transforming growth factor beta1. Eur J Histochem 45:151–162

    CAS  PubMed  Google Scholar 

  • Stamati K, Mudera V, Cheema U (2011) Evolution of oxygen utilization in multicellular organisms and implications for cell signalling in tissue engineering. J Tissue Eng 2:2041731411432365. https://doi.org/10.1177/2041731411432365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stamenović D, Wang N (1985) Invited review: engineering approaches to cytoskeletal mechanics. J Appl Physiol 89:2085–2090

    Article  Google Scholar 

  • Starck JM, Ricklefs RE (1998) Avian growth and development: evolution within the altricial-precocial spectrum. Oxford University Press, New York

    Google Scholar 

  • Stern CD (2004) The chick embryo–past, present and future as a model system in developmental biology. Mech Dev 121:1011–1013

    Article  CAS  PubMed  Google Scholar 

  • Stern CD (2005) The chick; a great model system becomes even greater. Dev Cell 8:9–17

    CAS  PubMed  Google Scholar 

  • Stewart K, Morrisey E (2016) Early development of the mammalian lung-branching morphogenesis. In: Jobe A, Whitsett J, Abman S (eds) Fetal and neonatal lung development: clinical correlates and technologies for the future. Cambridge University Press, Cambridge, pp 22–33

    Chapter  Google Scholar 

  • Stiles AD, Chrysis D, Jorvis HW, Brighton B, Moats-Staats BM (2001) Programmed cell death in normal fetal rat lung development. Exp Lung Res 25:569–587

    Google Scholar 

  • St Johnston D (2015) The renaissance of developmental biology. PLoS Biol 13:e1002149. https://doi.org/10.1371/journal.pbio.1002149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • St Johnston D, Sanson B (2011) Epithelial polarity and morphogenesis. Curr Opin Cell Biol 23:540–546

    Article  CAS  PubMed  Google Scholar 

  • Stock MK, Francisco DL, Metcalfe J (1983) Organ growth in chick embryos incubated in 40% or 70% oxygen. Respir Physiol 52:1–11

    Article  CAS  PubMed  Google Scholar 

  • Stock MK, Metcalfe J (1984) Stimulation of growth of the chick embryo by acute hyperoxia. Respir Physiol 58:351–358

    Article  CAS  PubMed  Google Scholar 

  • Stockard CR (1915) The origin of blood and vascular endothelium in embryos without a circulation of blood and in the normal embryo. Am J Anat 18:227–325

    Article  Google Scholar 

  • Stone KC, Mercer RR, Gehr P, Stockstill B, Crapo JD (1992) Allometric relationships of cell numbers and size in the mammalian lung. Am J Respir Cell Mol Biol 6:235–243

    Article  CAS  PubMed  Google Scholar 

  • Strzyz P (2007) Pulling the apoptotic trigger for necrosis. Nat Rev Mol Cell Biol 18:72. https://doi.org/10.1038/nrm.2017.1

    Article  CAS  Google Scholar 

  • Styler DF (2008) Entropy and evolution. Am J Phys 76:1031–1033

    Article  Google Scholar 

  • Suzuki M, Morita H, Ueno N (2012) Molecular mechanisms of cell shape changes that contribute to vertebrate neural tube closure. Develop Growth Differ 54:266–276

    Article  CAS  Google Scholar 

  • Suzuki K, Yamanishi K, Mori O, Kamikawa M, Andersen B, Kato S, Toyoda T, Yamada G (2000) Defective terminal differentiation and hypoplasia of the epidermis in mice lacking the Fgf10 gene. FEBS Lett 481:53–56

    Article  CAS  PubMed  Google Scholar 

  • Swarr DT, Morrisey EE (2015) Lung endoderm morphogenesis: gasping for form and function. Annu Rev Cell Dev Biol 31:553–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sylva M, Vivian SW, Buffing AAA, van Es JH, van den Born M, van der Velden S, Gunst Q, Koolstra JH, Moorman AFM, Clevers H et al (2011) The BMP antagonist follistatin-like 1 is required for skeletal and lung organogenesis. PLoS One 6:e22616. https://doi.org/10.1371/journal.pone.0022616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szebenyi G, Fallon JF (1999) Fibroblast growth factors as multifunctional signaling factors. Int Rev Cytology 185:45–106

    Article  CAS  Google Scholar 

  • Takada M, Sagawa F, Chi NC, Endo S, Kozawa S, Sato TN (2017) Re-evaluating the functional landscape of the cardiovascular system during development. Bio Open 6:1756–1770

    CAS  Google Scholar 

  • Tallquist MD, Soriano P, Klinghoffer RA (1999) Growth factor signaling pathways in vascular development. Oncogene 18:7917–7932

    Article  CAS  PubMed  Google Scholar 

  • Tan CM, Lewandowski AJ (2020) The transitional heart: from early embryonic and fetal development to neonatal life. Fetal Diagn Ther 47:373–386

    Article  PubMed  Google Scholar 

  • Taichman DB, Loomes KM, Schachtner SK, Guttentag S, Vu C, Williams P, Oakley RJ, Baldwin HS (2002) Notch 1 and jagged 1 expression by the developing pulmonary vasculature. Dev Dyn 225:166–175

    Article  CAS  PubMed  Google Scholar 

  • Tata PR, Rajagopal J (2017) Plasticity in the lung: making and breaking cell identity. Development 144:755–766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatsumi N, Kobayashi R, Yano T, Noda M, Fujimura K, Okada N, Okabe M (2016) Molecular developmental mechanism in polypterid fish provides insight into the origin of vertebrate lungs. Sci Rep 6:30580. https://doi.org/10.1038/srep30580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tazawa H, Hashimoto Y, Nakazawa S, Whittow GC (1992) Metabolic responses of chicken embryos and hatchlings to altered oxygen environments. Respir Physiol 88:37–50

    Article  CAS  PubMed  Google Scholar 

  • Tazawa H, Okuda A, Nakazawa S, Whittow GC (1989) Metabolic responses of chicken embryos to graded, prolonged alterations in ambient temperature. Comp Biochem Physiol 92:613–617

    Article  CAS  Google Scholar 

  • Ten Have-Opbroek AAW (1981) The development of the lung in mammals: an analysis of concepts and findings. Am J Anat 162:201–219

    Article  PubMed  Google Scholar 

  • Ten Have-Opbroek AA (1991) Lung development in the mouse embryo. Exp Lung Res 17:111–130

    Article  PubMed  Google Scholar 

  • Thompson D’AW (1917) On growth and form, 1st edtn. Cambridge University Press, Cambridge (UK)

    Book  Google Scholar 

  • Thompson DW (1942) On growth and form, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Toews GB (2001) Cytokines and the lung. Europ Respir J 18:3s–17s. https://doi.org/10.1183/09031936.01.00266001

    Article  CAS  Google Scholar 

  • Tomanek RJ, Holifield JS, Reiter RS, Sandra A, Lin JJC (2002) Role of VEGF family members and receptors in coronary vessel formation. Dev Dyn 225:233–240

    Article  CAS  PubMed  Google Scholar 

  • Tona K, Voemesse K, N’nanlé O, Oke OE, Kouame YAE, Bilalissi A, Meteyake H, Oso OM (2022) Chicken incubation conditions: role in embryo development, physiology and adaptation to the posthatch environment. Front Physiol 13:895854. https://doi.org/10.3389/fphys.2022.895854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toussaint O, Schneider ED (1998) The thermodynamics and evolution of complexity in biological systems. Comp Biochem Physiol A Mol Integr Physiol 120:3–9

    Article  CAS  PubMed  Google Scholar 

  • Travaglini KJ, Nabhan AN, Penland L, Sinha R, Glilich A, Sit RV, Chang S, Conley SD, Mori Y, Seita J et al (2020) A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587:619–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tschanz SA, Salm LA, Roth-Kleiner M, Barre SF, Burri PH, Schittny JC (2014) Rat lungs show a biphasic formation of new alveoli during postnatal development. J Appl Physiol 117:89–95

    Article  PubMed  Google Scholar 

  • Tsao PN, Vasconcelos M, Izvolsky KI, Qian J, Lu J, Cardoso WV (2009) Notch signaling controls the balance of ciliated and secretory cell fates in developing airways. Development 136:2297–2307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turcatel G, Rubin N, Menke DB, Martin G, Shi W, Warburton D (2013) Lung mesenchymal expression of Sox9 plays a critical role in tracheal development. BMC Biol 11:117. http://www.biomedcentral.com/1741-7007/11/117. Accessed on 10-07-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B 237:37–72

    Article  Google Scholar 

  • Tyler SEB (2014) The work surfaces of morphogenesis: the role of the morphogenetic field. Biol Theory 9:194–208

    Article  Google Scholar 

  • Tzou D, Spurlin JW, Pavlovich AL, Stewart CR, Gleghorn JP, Nelson CM (2016) Morphogenesis and morphometric scaling of lung airway development follows phylogeny in chicken, quail, and duck embryos. EvoDevo 7:12. https://doi.org/10.1186/s13227-016-0049-3

    Article  PubMed  PubMed Central  Google Scholar 

  • Uçar MC, Kamenev D, Sunadome K, Fachet D, Lallemend F, Adameyko I, Hadjab S, Hannezo E (2021) Theory of branching morphogenesis by local interactions and global guidance. Nat Commun 12:6830. https://doi.org/10.1038/s41467-021-27135-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ucuzian AA, Gassman AA, East AT, Greisler HP (2010) Molecular mediators of angiogenesis. J Burn Care Res 31:158–175

    Article  PubMed  Google Scholar 

  • Udan RS, Culver JC, Dickinson ME (2013) Understanding vascular development. Wiley Interdiscip Rev Dev Biol 2:327–346

    Article  CAS  PubMed  Google Scholar 

  • Uhler C, Shivashankar G (2017) Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat Rev Mol Cell Biol 18:717–727

    Article  CAS  PubMed  Google Scholar 

  • Ulloa F, Martí E (2010) Wnt won the war: antagonistic role of Wnt over shh controls dorso-ventral patterning of the vertebrate neural tube. Dev Dyn 239:69–76

    Article  CAS  PubMed  Google Scholar 

  • Ungerer MC, Johnson LC, Herman MA (2008) Ecological genomics: understanding gene and genome function in the natural environment. Heredity 100:178–183

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Dimmeler S (2004) Endothelial progenitor cells functional characterization. Trends Cardiovasc Med 14:318–322

    Article  CAS  PubMed  Google Scholar 

  • Vailhé B, Lecomte M, Wiernsperger N, Tranqui L (1998) The formation of tubular structures by endothelial cells is under the control of fibrinolysis and mechanical factors. Angiogenesis 2:331–344

    Article  PubMed  Google Scholar 

  • Vailhé B, Vittet D, Feige JJ (2001) In vitro models of vasculogenesis and angiogenesis. Lab Investig 81:439–452

    Article  PubMed  Google Scholar 

  • van Amerongen R, Nusse R (2009) Towards an integrated view of Wnt signaling in development. Development 136:3205–3214

    Article  PubMed  Google Scholar 

  • Van Tuyl MV, Del Riccio V, Post M (2004) Lung branching morphogenesis: potential for regeneration of small conducting airways. In: Massaro DJ, Massaro GC, Chambon P (eds) Lung development and regeneration. Marcel Dekker Inc., New York, pp 355–393

    Google Scholar 

  • Varjosalo M, Taipale J (2008) Hedgehog: functions and mechanisms. Genes Dev 22:2454–2472

    Article  CAS  PubMed  Google Scholar 

  • Varner VD, Nelson CM (2014) Cellular and physical mechanisms of branching morphogenesis. Development 141:2750–2759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Veikkola T, Alitalo K (1999) VEGFs, receptors and angiogenesis. Semin Cancer Biol 9:211–220

    Article  CAS  PubMed  Google Scholar 

  • Veikkola T, Karkkainen M, Claesson-Welsh L, Alitalo K (2000) Regulation of angiogenesis via vascular endothelial growth factor receptors. Cancer Res 60:203–212

    CAS  PubMed  Google Scholar 

  • Vergara MN, Canto-Soler MV (2012) Rediscovering the chick embryo as a model to study retinal development. Neural Dev 7:22. https://doi.org/10.1186/1749-8104-7-22

    Article  PubMed  PubMed Central  Google Scholar 

  • Vining K, Mooney D (2017) Mechanical forces direct stem cell behaviour in development and regeneration. Nat Rev Mol Cell Biol 18:728–742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vizcaíno SF, Bargo MS (2021) Views on the form-function correlation and biological design. J Mammal Evol 28:15–22

    Article  Google Scholar 

  • Vleck CM, Hoyt DF (1991) Metabolism and energetics of reptilian and avian embryos. In: Deeming DC, MWJ F (eds) Egg incubation: its effects on embryonic development in birds and reptiles. Cambridge University Press, New York, pp 285–306

    Chapter  Google Scholar 

  • Vleck CM, Kenagy GJ (1980) Embryonic metabolism of the fork-tailed storm petrel: physiological patterns during prolonged and interrupted incubation. Physiol Zool 53:32–42

    Article  Google Scholar 

  • Vleck CM, Vleck D (1987) Metabolism and energetics of avian embryos. J Exp Zool Suppl 1:111–125

    CAS  PubMed  Google Scholar 

  • Vleck CM, Hoyt DF, Vleck D (1979) Metabolism of avian embryos: patterns in altricial and precocial birds. Physiol Biochem Zool 52:363–377

    Google Scholar 

  • Vleck CM, Vleck D, Hoyt DF (1980) Patterns of metabolism and growth in avian embryos. Amer Zool 20:405–416

    Article  Google Scholar 

  • Voelkel NF, Vandvier RW, Tuder RM (2006) Vascular endothelial growth factor in the lung. Am J Physiol Lung Cell Mol Physiol 290:L209–L221

    Article  CAS  PubMed  Google Scholar 

  • Waddington CH (1957) (reissued 2014) the strategy of the genes: a discussion of some aspects of theoretical biology. Routledge, Taylor and Francis Group, London

    Google Scholar 

  • Wake MH (2008) Integrative biology: science for the 21st century. Bioscience 58:349–353

    Article  Google Scholar 

  • Walker I (1991) Why legs and not wheels? Acta Biotheor 39:151–155

    Article  Google Scholar 

  • Wang L, Li L, Shojaei F, Levac K, Cerdan C, Menendez P, Martin T, Rouleau A, Bhatia M (2004) Endothelial and hematopoietic cell fate of human embryonic stem cells originates from primitive endothelium with hemangioblastic properties. Immunity 21:31–41

    Article  CAS  PubMed  Google Scholar 

  • Warburton D (2008) Developmental biology: order in the lung. Nature 453:733–735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warburton D (2021) Conserved mechanisms in the formation of the airways and alveoli of the lung. Front Cell Dev Biol 9:662059. https://doi.org/10.3389/fcell.2021.662059

    Article  PubMed  PubMed Central  Google Scholar 

  • Warburton D, Bellusci S (2004) The molecular genetics of lung morphogenesis and injury repair. Paediatr Respir Rev Suppl 5A:S283–S287. https://doi.org/10.1016/s1526-0542(04)90052-8

    Article  Google Scholar 

  • Warburton D, Bellusci S, De Langhe S, Del Moral PM, Fleury V, Mailleaux A, Tefft D, Unbekandt M, Wang K, Shi W (2005) Molecular mechanisms of early lung specification and branching morphogenesis. Pediatr Res 57:26–37

    Article  Google Scholar 

  • Warburton D, Bellusci S, Del Moral PM, Kaartinen V, Lee MD, Shi W (2003) Growth factor signaling in lung morphogenetic centers automaticity, stereotypy and symmetry. Respir Res 19:294–315

    Google Scholar 

  • Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J et al (2010) Lung organogenesis. Curr topics. Dev Biol 90:73–158

    CAS  Google Scholar 

  • Warburton D, Schwarz M, Tefft D, Flores-Delgado G, Anderson KD, Cardoso WV (2000) The molecular basis of lung morphogenesis. Mech Dev 92:55–81

    Article  CAS  PubMed  Google Scholar 

  • Warburton D, Tefft D, Mailleux A, Bellusci S, Thiery JP, Zhao J, Buckley S, Shi W, Driscoll B (2001) Do lung remodeling, repair, and regeneration recapitulate respiratory ontogeny? Amer J Respir Crit Care Med 164:S59–S62

    Article  CAS  Google Scholar 

  • Warburton D, Wuenschell C, Flores-Delgado G, Anderson K (1998) Commitment and differentiation of lung cell lineages. Biochem Cell Biol 76:971–995

    Article  CAS  PubMed  Google Scholar 

  • Watson RR, Fu Z, West JB (2008) Minimal distensibility of pulmonary capillaries in avian lungs compared with mammalian lungs. Respir Physiol Neurobiol 160:208–214

    Article  PubMed  Google Scholar 

  • Weaver M, Dunn NR, Hogan BL (2000) BMP-4 and FGF-10 play opposing roles during lung bud morphogenesis. Development 127:2695–2704

    Article  CAS  PubMed  Google Scholar 

  • Webster WS, Abela D (2007) The effect of hypoxia in development. Embryo Today Revs 81:215–228

    CAS  Google Scholar 

  • Wedel MJ (2003) Vertebral pneumaticity, air sacs, and the physiology of sauropod dinosaurs. Paleobiology 29:243–255

    Article  Google Scholar 

  • Weibel ER (1984) The pathways for oxygen. Harvard University Press, Harvard (MA)

    Google Scholar 

  • Weibel ER (1991) Fractal geometry: a design principle for living organisms. Amer J Physiol Lung Cell Mol Physiol 261:L361–L369

    Article  CAS  Google Scholar 

  • Weibel ER (1994) Design of biological organisms and fractal geometry. In: Nonnenmacher TF, Losa GA, Weibel ER (eds) Fractals in biology and medicine, vol 1. Birkhäuser, Basel, pp 68–85

    Chapter  Google Scholar 

  • Weibel ER (2000) Symmorphosis: on form and function in shaping life. Harvard University Press, Cambridge (MA)

    Google Scholar 

  • Weibel ER (2005) Mandelbrot’s fractals and the geometry of life: a tribute to Benoît Mandelbrot on his 80th birthday. In: Losa GA, Merlini D, Nonnenmacher TF, Weibel ER (eds) Fractals in biology and medicine. Mathematics and Biosciences in Interaction, Birkhäuser (Basel), pp 3–16

    Chapter  Google Scholar 

  • Weibel ER, Taylor CR, Bolis L (eds) (1998) Principles of animal design: the optimization and symmorphosis debate. Cambridge University Press, Cambridge (UK)

    Google Scholar 

  • Weibel ER, Taylor CR, Hoppeler H (1991) The concept of symmorphosis: a testable hypothesis of structure-function relationship. Proc Natl Acad Sci U S A 88:10357–10361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weidenfeld J, Shu W, Zhang L, Millar SE, Morrisey EE (2002) The Wnt7b promoter is regulated by TFT-1, GAATA6, and Foxa2 in lung epithelium. J Bio Chem 277:21061–21070

    Article  CAS  Google Scholar 

  • Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function coorperatively to direct alveogenesis in the murine lung. Development 125:3615–3623

    Article  CAS  PubMed  Google Scholar 

  • Weis-Fogh T (1964a) Functional design of the tracheal system of flying insects as compared with the avian lung. J Exp Biol 41:207–227

    Article  CAS  Google Scholar 

  • Weis-Fogh T (1964b) Diffusion in insect wing muscle, the most active tissue known. J Exp Biol 41:229–256

    Article  CAS  PubMed  Google Scholar 

  • Weis-Fogh T (1967) Respiration and tracheal ventilation in locusts and other flying insects. J Exp Biol 47:561–587

    Article  CAS  PubMed  Google Scholar 

  • Wessells NK (1970) Mammalian lung development: interactions in formation and morphogenesis of tracheal buds. J Exp Zool 175:455–466

    Article  CAS  PubMed  Google Scholar 

  • West-Eberhard MJ (2005) Phenotypic accommodation: adaptive innovation due to developmental plasticity. J Exp Zool 304B:610–618

    Article  Google Scholar 

  • West GB, Brown JH, Enquist BJ (1991) The fourth dimension of life: fractal geometry and allometric scaling of organisms. Science 284:1677–1679

    Article  Google Scholar 

  • West JB, Fu Z, Gu Y, Wagner HE, Carr JA, Peterson KL (2010) Pulmonary artery pressure responses to increased cardiac output in chickens with raised metabolic rate. Comp Biochem Physiol A Mol Integr Physiol 156:430–435

    Article  PubMed  PubMed Central  Google Scholar 

  • West JB, Watson RR, Fu Z (2006) The honeycomb-like structure of the bird lung allows a uniquely thin blood-gas barrier. Respir Physiol Neurobiol 152:115–118

    Article  PubMed  Google Scholar 

  • West JB, Watson RR, Fu Z (2007) Major differences in the pulmonary circulation between birds and mammals. Respir Physiol Neurobiol 157:382–390

    Article  PubMed  Google Scholar 

  • West NH, Bamford OS, Jones DR (1977) A scanning electron microscope study of the microvasculature of the avian lung. Cell Tissue Res 176:553–564

    Article  CAS  PubMed  Google Scholar 

  • Weston EM (2003) Evolution of ontogeny in the hippopotamus skull: using allometry to dissect developmental change. Biol J Linn Soc 80:625–638

    Article  Google Scholar 

  • White S, Danowitz M, Solounias N (2016) Embryology and evolutionary history of the respiratory tract. Edorium J Anat Embryo 3:54–62

    Google Scholar 

  • Whitsett JA, Haitchi HM, Maeda Y (2011) Intersection between pulmonary development and disease. Amer J Respir Crit Care Med 184:401–406

    Article  CAS  Google Scholar 

  • Whitsett JA, Kalin TV, Xu Y, Kalinichenko VV (2019) Building and regenerating the lung cell by cell. Physiol Rev 99:513–554

    Article  CAS  PubMed  Google Scholar 

  • Whittow GC (1980) Physiological and ecological correlates of prolonged incubation in sea birds. Amer Zool 20:427–436

    Article  Google Scholar 

  • Widelitz R (2005) Wnt signaling through canonical and non-canonical pathways: recent progress. Growth Factors 23:111–116

    Article  CAS  PubMed  Google Scholar 

  • Willenborg C, Prekeris R (2011) Apical protein transport and lumen morphogenesis in polarized epithelial cells. Biosci Rep 31:245–256

    Article  CAS  PubMed  Google Scholar 

  • Willert K, Nusse R (2012) Wnt proteins. Cold Spring Harb Perspect Biol 4:a007864. https://doi.org/10.1101/cshperspect.a007864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wilson NH, Stoeckli ET (2012) Sonic hedgehog regulates Wnt activity during neural circuit formation. Vitam Horm 88:173–209

    Article  CAS  PubMed  Google Scholar 

  • Wilting J, Becker J (2006) Two endothelial cell lines derived from the somite. Anat Embryol 1:57–63

    Article  Google Scholar 

  • Witsch E, Sela M, Yarden Y (2010) Roles for growth factors in cancer progression. Physiology 25:85–101

    Article  CAS  PubMed  Google Scholar 

  • Wittenberg RW (1993) Models of self-organization in biological development. MSc Thesis,. University of Cape Town

    Google Scholar 

  • Wittig JG, Münsterberg A (2016) The early stages of heart development: insights from chicken embryos. J Cardiovasc Dev Dis 3:12. https://doi.org/10.3390/jcdd3020012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wodarz A, Nusse R (1998) Mechanisms of Wnt signaling in development. Annu Rev Cell Biol 14:59–88

    Article  CAS  Google Scholar 

  • Wolf YI, Katsnelson MI, Koonina EV (2018) Physical foundations of biological complexity. Proc Natl Acad Sci U S A 115:E8678–E8687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wongtrakool C, Malpel S, Gorenstein J, Sedita J, Ramirez MI, Underhill TM, Cardoso WV (2003) Down-regulation of retinoic acid receptor α signaling is required for sacculation and type-1 cell formation in the developing lung. J Biol Chem 278:46911–46918

    Article  CAS  PubMed  Google Scholar 

  • Wongtrakool C, Roman J (2008) Apoptosis of mesenchymal cells during the pseudoglandular stage of lung development affects branching morphogenesis. Exp Lung Res 34:481–499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood HB, May G, Healy L, Enver T, Morriss-Kay GM (1997) CD34 expression patterns during early mouse development are related to modes of blood vessel formation and reveal additional sites of hematopoiesis. Blood 90:2300–2311

    Article  CAS  PubMed  Google Scholar 

  • Woods JC, Schittny JC (2016) Lung structure at preterm and term birth. In: Jobe AH, Whitsett JA, Abman SH (eds) Fetal lung development–clinical correlates and future technologies. Cambridge University Press, New York, pp 126–140

    Chapter  Google Scholar 

  • Wozniak M, Chen C (2009) Mechanotransduction in development: a growing role for contractility. Nat Rev Mol Cell Biol 10:34–43

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu J, Chu X, Chen C, Bellusci S (2018) Role of fibroblast growth factor 10 in mesenchymal cell differentiation during lung development and disease. Front Genet 9:545. https://doi.org/10.3389/fgene.2018.00545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xing J, Bai F, Berry R, Oster G (2006) Torque-speed relationship of the bacterial flagellar motor. Proc Natl Acad Sci U S A 103:1260–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Sun M, Zhao X (2017) Turing mechanism underlying a branching model for lung morphogenesis. PLoS One 12:e0174946. https://doi.org/10.1371/journal.pone.0174946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu LJ, Mortola JP (1988) Development of the chick embryo: effects of egg mass. Respir Physiol 74:177–186

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Lai Y, Hua ZC (2019) Apoptosis and apoptotic body: disease message and therapeutic target potentials. Biosci Rep 39:BSR20180992. https://doi.org/10.1042/BSR20180992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Weistein M, Li C, Naski M, Cohen RI, Ornitz DM, Leder P, Deng C (1998) Fibroblast growth factor 2 (FGFR-2) mediated reciprocal regulation loop between FGF-8 and FGF-10 is essential for limb induction. Development 125:753–765

    Article  CAS  PubMed  Google Scholar 

  • Yahaya B (2012) Understanding cellular mechanisms underlying airway epithelial repair: selecting the most appropriate animal models. Sci World J 2012:961684. https://doi.org/10.1100/2012/961684

    Article  CAS  Google Scholar 

  • Yancopoulous GD, Davis S, Gale NW, Rudge JS, Wiegand SJ, Holash J (2000) Vascular-specific growth factors and blood vessel formation. Nature 407:242–248

    Article  Google Scholar 

  • Yang L, Lin M, Ruan WJ, Dong LL, Chen EG, Wu XH, Ying KJ (2012) Nkx2-1: a novel tumor biomarker of lung cancer. J Zhejiang Univ Sci B 13:855–866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yates LL, Schnatwinkel C, Murdoch JN, Bogani D, Formstone CJ, Townsend S, Greenfield A, Niswander LA, Dean CH (2010) The PCP genes Celsr1 and Vangl2 are required for normal lung branching morphogenesis. Human Mol Genet 19:2251–2267

    Article  CAS  Google Scholar 

  • Yedwab GA, Paz G, Homonnai TZ, David MP, Kraicer PF (1976) The temperature, pH, and partial pressure of oxygen in the cervix and uterus of women and uterus of rats during the cycle. Fertility Sterility 27:304–309

    Article  CAS  PubMed  Google Scholar 

  • Yorimitsu T, Homma M (2001) Na+−driven flagellar motor of Vibrio. Biochim Biophys Acta Bioenerg 1505:83–93

    Article  Google Scholar 

  • Yuan T, Volckaert T, Chanda D, Thannickal VJ, De Langhe SP (2018) Fgf10 Signaling in lung development, homeostasis, disease, and repair after injury. Front Genet 9:418. https://doi.org/10.3389/fgene.2018.00418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yun EJ, Lorizio W, Seedorf G, Abman SH, Vu TH (2016) VEGF and endothelium-derived retinoic acid regulate lung vascular and alveolar development. Am J Physiol Lung Cell Mol Physiol 310:L287–L298

    Article  PubMed  Google Scholar 

  • Yuri IW, Katsnelson MI, Koonin EV (2018) Physical foundations of complexity. Proc Natl Acad Sci U S A 115:E8678–E8687

    Google Scholar 

  • Zakeri Z, Penaloza CG, Smith K, Ye Y, Lockshin RA (2015) What cell death does in development. Int J Dev Biol 59:11–22

    Article  CAS  PubMed  Google Scholar 

  • Zeng X, Yutzey KE, Whitsett JA (1998) Thyroid transcription factor-1, hepatocyte nuclear factor-3beta and surfactant protein a and B in the developing chick lung. J Anat 193:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Goss AM, Cohen ED, Kadzik R, Lepore JJ, MuthukumaraswamyK YJ, DeMayo FJ, Whitsett JA, Parmacek MS, Morrisey EE (2008) A Gata6-Wnt pathway required for epithelial stem cell development and airway regeneration. Nat Genet 40:862–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou J, Schor IE, Yao V, Theesfeld CL, Marco-Ferreres R, Tadych A, Furlong EEM, Troyanskaya OG (2019) Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development. PLoS Genet 15:e1008382. https://doi.org/10.1371/journal.pgen.1008382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou M, Sutliff RL, Paul RJ, Lorenz JN, Hoying JB, Haudenschild CC, Yin M, Coffin JD, Kong L, Kranias EG et al (1998) Fibroblast growth factor 2 control of vascular tone. Nature (Med) 4:201–207

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Chen J, Luan Y, Vainikka PA, Thallmair S, Marrink SJ, Feringa BL, van Rijn P (2020) Unidirectional rotating molecular motors dynamically interact with adsorbed proteins to direct the fate of mesenchymal stem cells. Sci Adv 6:eaay2756. https://doi.org/10.1126/sciadv.aay2756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou T, He X, Cheng R, Zhang B, Zhang RR, Chen Y, Takahashi Y (2012) Implication of dysregulation of the canonical wingless-type MMTV integration site (WNT) pathway in diabetic neuropathy. Diabetologia 55:255–266

    Article  CAS  PubMed  Google Scholar 

  • Zorn AM, Wells JM (2009) Vertebrate endoderm development and organ formation. Ann Rev Cell Dev Biol 25:221–251. https://doi.org/10.1146/annurev.cellbio.042308.113344

    Article  CAS  Google Scholar 

  • Zuo YY, Acosta E, Policova Z, Cox PN, Hair ML, Neumann AW (2006) Effect of humidity on the stability of lung surfactant films adsorbed at air-water interfaces. Biochim Biophys Acta 1758:1609–1620

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Maina, J.N. (2023). Development of the Avian Respiratory System. In: Current Perspectives on the Functional Design of the Avian Respiratory System. Zoological Monographs, vol 8. Springer, Cham. https://doi.org/10.1007/978-3-031-35180-8_2

Download citation

Publish with us

Policies and ethics