Skip to main content

Digital Breast Tomosynthesis Reconstruction Techniques in Healthcare Systems: A Review

  • Conference paper
  • First Online:
Bioinformatics and Biomedical Engineering (IWBBIO 2023)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13920))

  • 553 Accesses

Abstract

Digital Breast Tomosynthesis (DBT) images are widely used to increase breast cancer detection and reduce recall rates in healthcare systems for breast cancer detection. In the field of medical imaging, computer-aided diagnosis (CAD) systems are used to analyze this type of images. Generally, in order to achieve an early detection of breast cancer, these CAD systems start with the reconstruction part of the image, the pre-processing step and then the segmentation and classification. However, the post-acquisition techniques of DBT can impact the detection and diagnosis of breast cancer, and bias the final decision in computer-aided detection and diagnosis systems. Mainly, the reconstruction phase in computer aided detection systems, that helps prepare the DBT for further analysis, such as segmentation and classification of abnormalities. In this paper, we present a survey of different techniques for DBT reconstruction, that we compared theoretically in terms of advantages and drawbacks, particularly for healthcare systems dedicated to breast cancer detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Buda, M., et al.: Detection of masses and architectural distortions in digital breast tomosynthesis: a publicly available dataset of 5,060 patients and a deep learning model. arXiv preprint arXiv:2011.07995 (2020)

  2. Nystrom, L., Andersson, I., Bjurstam, N., Frisell, J., Nordenskjold, B., Rutqvist, L.E.: Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet 359, 909–919 (2002)

    Article  PubMed  Google Scholar 

  3. Carney, P.A., et al.: Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann. Intern. Med. 138, 168–175 (2003)

    Article  PubMed  Google Scholar 

  4. Michell, M.J., et al.: A comparison of the accuracy of film-screen mammography, full-field digital mammography, and digital breast tomosynthesis. Clin. Radiol. 67, 976–981 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. Haas, B.M., Kalra, V., Geisel, J., Raghu, M., Durand, M., Philpotts, L.E.: Comparison of tomosynthesis plus digital mammography and digital mammography alone for breast cancer screening. Radiology 269, 694–700 (2013)

    Article  PubMed  Google Scholar 

  6. Lakshminarayanan, A.S., Radhakrishnan, S., Pandiasankar, G.M., Ramu, S.: Diagnosis of cancer using hybrid clustering and convolution neural network from breast thermal image. J. Test. Eval. 47(6), 3975–3987 (2019)

    Article  Google Scholar 

  7. Wu, W., Pirbhulal, S., Li, G.: Adaptive computing-based biometric security for intelligent medical applications. Neural Comput. Appl. 32(15), 11055–11064 (2020). https://doi.org/10.1007/s00521-018-3855-9

    Article  Google Scholar 

  8. Ait lbachir, I., Es-salhi, R., Daoudi, I., Tallal, S., Medromi, H.: A survey on segmentation techniques of mammogram images. In: El-Azouzi, R., Menasché, D.S., Sabir, E., Pellegrini, F.D., Benjillali, M. (eds.) Advances in Ubiquitous Networking 2. LNEE, vol. 397, pp. 545–556. Springer, Singapore (2017). https://doi.org/10.1007/978-981-10-1627-1_43

    Chapter  Google Scholar 

  9. Peters, G.: Computer-aided detection for digital breast tomosynthesis (Doctoral dissertation, Télécom ParisTech) (2007)

    Google Scholar 

  10. Fan, M., Zheng, H., Zheng, S., et al.: Mass detection and segmentation in digital breast tomosynthesis using 3D-mask region-based convolutional neural network: a comparative analysis. Front. Mol. Biosci. 7, 599333 (2020)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. http://www.depistagesein.ca/tomosynthese/#.YwrI33bP3IX

  12. https://moffitt.org/for-healthcare-professionals/clinical-programs-and-services/breast-oncology-program/treatments-services/digital-breast-tomosynthesis/

  13. Kuo, J., Ringer, P.A., Fallows, S.G., Bakic, P.R., Maidment, A.D., Ng, S.: Dynamic reconstruction and rendering of 3D tomosynthesis images. In: Medical Imaging: Physics of Medical Imaging, vol. 7961, pp. 355–365. SPIE (2011)

    Google Scholar 

  14. Rafferty, E.A., Niklason, L., Halpern, E.: Assessing radiologist performance using combined full-field digital mammography and breast tomosynthesis versus full-field digital mammography alone: results of a multi-center, multi-reader trial. In: 93rd Scientific Assembly and Annual Meeting of the RSNA (2007)

    Google Scholar 

  15. Poplack, S.P., Tosteson, T.D., Kogel, C.A., Nagy, H.M.: Digital breast tomosynthesis: initial experience in 98 women with abnormal digital screening mammography. AJR Am. J. Roentgenol. 189, 616–623 (2007)

    Article  PubMed  Google Scholar 

  16. Gennaro, G., et al.: Digital breast tomosynthesis versus digital mammography: a clinical performance study. Eur. Radiol. 20, 1545–1553 (2010)

    Article  PubMed  Google Scholar 

  17. Zhu, F., et al.: Comparison and optimization of iterative reconstruction algorithms in digital breast tomosynthesis. Optik 203, 164033 (2020)

    Article  CAS  Google Scholar 

  18. Zackrisson, S., Houssami, N.: Evolution of mammography screening: from film screen to digital breast tomosynthesis. In: Breast Cancer Screening, pp. 323–346. Academic Press (2016)

    Google Scholar 

  19. Lauritsch, G., Haerer, W.: Theoretical framework for filtered back projection in tomosynthesis. In: Proceedings of the SPIE Medical Imaging, vol. 3338, pp. 1127–1137 (1998)

    Google Scholar 

  20. Mertelmeier, T., Orman, J., Haerer, W., Dudam, M.K.: Optimizing filtered backprojection reconstruction for a breast tomosynthesis prototype device. In: Proceedings of the SPIE Medical Imaging, vol. 6142, p. 61420F. SPIE (2006)

    Google Scholar 

  21. Gordon, R., Bender, R., Herman, G.T.: Algebraic reconstruction techniques (ART) for three-dimensional electron microscopy and x-ray photography. J. Theor. Biol. 29, 471–481 (1970)

    Article  CAS  PubMed  Google Scholar 

  22. Gilbert, P.: Iterative methods for the three-dimensional reconstruction of an object from projections. J. Theor. Biol. 36, 105–117 (1972)

    Article  CAS  PubMed  Google Scholar 

  23. Andersen, A.H., Kak, A.C.: Simultaneous Algebraic Reconstruction Technique (SART): a superior implementation of the ART algorithm. Ultrason. Imaging 6(1), 81–94 (1984)

    Article  CAS  PubMed  Google Scholar 

  24. Zhang, Y., et al.: Tomosynthesis reconstruction using the simultaneous algebraic reconstruction technique (SART) on breast phantom data. In: Proceedings of the SPIE Medical Imaging, vol. 6142, p. 614249. SPIE (2006)

    Google Scholar 

  25. Chen, Y., Lo, J.Y., Dobbins, J.T., III.: Impulse response analysis for several digital tomosynthesis mammography reconstruction algorithms. Proc. SPIE 5745, 541–549 (2005)

    Article  Google Scholar 

  26. Chen, Y., Lo, J.Y., Baker, J.A., Dobbins, J.T., III.: Gaussian frequency blending algorithm with matrix inversion tomosynthesis (MITS) and filtered back projection (FBP) for better digital breast tomosynthesis reconstruction. Proc. SPIE 6142, 61420E-61429E (2006)

    Article  Google Scholar 

  27. Wu, T., et al.: Tomographic mammography using a limited number of low-dose cone-beam projection images. Med. Phys. 30(3), 365–380 (2003)

    Article  PubMed  Google Scholar 

  28. Lange, K., Fessler, J.A.: Globally convergent algorithms for maximum a posteriori transmission tomography. IEEE Trans. Image Process. 4(10), 1430–1438 (1995)

    Article  CAS  PubMed  Google Scholar 

  29. Sechopoulos, I.: A review of breast tomosynthesis. Part II. Image reconstruction, processing and analysis, and advanced applications. Med. Phys. 40(1), 014302 (2013). https://doi.org/10.1118/1.4770281

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imane Samiry .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Samiry, I., Ait Lbachir, I., Daoudi, I., Tallal, S., Adil, S. (2023). Digital Breast Tomosynthesis Reconstruction Techniques in Healthcare Systems: A Review. In: Rojas, I., Valenzuela, O., Rojas Ruiz, F., Herrera, L.J., Ortuño, F. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2023. Lecture Notes in Computer Science(), vol 13920. Springer, Cham. https://doi.org/10.1007/978-3-031-34960-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34960-7_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34959-1

  • Online ISBN: 978-3-031-34960-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics