Skip to main content

Liquefaction-Induced Downdrag on Tapered Piles from Full-Scale Blast Liquefaction Tests

  • Conference paper
  • First Online:
Geotechnical Engineering in the Digital and Technological Innovation Era (CNRIG 2023)

Abstract

Frequently, deep foundations extend through potentially liquefiable sand layers near the ground surface and bear on more competent layers at depth. When liquefaction occurs, the skin friction in the liquefied layer would be expected to decrease to some negligible value, but as the liquefiable layer settles, negative skin friction could potentially develop around the pile in this layer as effective stress increases. To investigate the loss of skin friction and the development of negative skin friction, axial load tests were performed on an instrumented full-scale tapered pile before and after blast-induced liquefaction at a site in Mirabello (Ferrara, Italy) that was affected by liquefaction following the 2012 Emilia earthquakes. The test pile was a 16.5 m long concrete pile with a diameter of 0.52 m at the head tapering to 0.26 m at the toe. Following blasting, liquefaction developed within a 6-m thick sand layer below a clay surface layer resulting in significant settlement. Skin friction in the liquefied layer initially dropped to essentially zero. However, as the liquefied sand reconsolidated, negative skin friction became equal to about 50% of the pre-blast ultimate positive skin friction. Negative skin friction in the overlying non-liquefied clay layer was only 80% of the ultimate positive skin friction. This is likely due to the surrounding soil moving slightly away from the tapered pile as the soil settled vertically downward. Despite significant ground settlement, pile settlement was relatively small because of the resistance provided by the toe of the pile.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boulanger, R.W., Brandenberg, S.J.: Neutral plane solution for liquefaction-induced down-drag on vertical piles. In: Geotech Engineering for Transportation Projects, pp. 470–478 (2004)

    Google Scholar 

  2. Fellenius, B.H., Siegel, T.C.: Pile drag load and downdrag in a liquefaction event. J. Geotech. Geoenviron. 134(9), 1412–1416 (2008)

    Article  Google Scholar 

  3. Weaver, T.J., Ashford, S.A., Rollins, K.M.: Response of 0.6 m cast-in-steel-shell pile in liquefied soil under lateral loading. J. Geotech. Geoenviron. 131(1), 94–102 (2005)

    Article  Google Scholar 

  4. Rollins, K.M., Gerber, T.M., Lane, J.D., Ashford, S.A.: Lateral resistance of a full-scale pile group in liquefied sand. J. Geotech. Geoenviron. 131(1), 115–125 (2005)

    Article  Google Scholar 

  5. Wentz, F., van Ballegooy, S., Rollins, K.M., Ashford, S.A., Olsen, M.: Large scale testing of shallow ground improvements using blast-induced liquefaction. In: Proceedings of the 6th International Conference on Earthquake Geotechnical Engineering. New Zealand Geotechnical Society (2015)

    Google Scholar 

  6. Ashford, S.A., Rollins, K.M., Lane, J.D.: Blast-induced liquefaction for full-scale foundation testing. J. Geotech. Geoenviron. 130(8), 798–806 (2004)

    Article  Google Scholar 

  7. Gallagher, P.M., Conlee, C.T., Rollins, K.M.: Full-scale field testing of colloidal silica grouting for mitigation of liquefaction risk. J. Geotech. Geoenviron. 133(2), 186–196 (2007)

    Article  Google Scholar 

  8. Rollins, K.M., Strand, S.: Downdrag forces due to liquefaction surrounding a pile. In: Proceedings of the 8th US National Conference on Earthquake Engineering (2006)

    Google Scholar 

  9. Rollins, K.M., Strand, S.R., Hollenbaugh, J.E.: Liquefaction induced downdrag and dragload from full-scale tests. In: Iai, S. (ed.) Developments in earthquake geotechnics. Geotechnical, Geological and Earthquake Engineering, vol. 43, pp. 89–109. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-62069-5_5

    Chapter  Google Scholar 

  10. Rollins, K.M., Hollenbaugh, J.: Liquefaction induced negative skin friction from blast-induced liquefaction tests with auger-cast piles. In: Proceedings of the 6th International Conference on Earthquake Geotechnical Engineering. New Zealand Geotechnical Society (2015)

    Google Scholar 

  11. Amoroso, S., Rollins, K.M., Lusvardi, C., Monaco, P., Milana, G.: Blast-induced liquefaction results at the silty-sand site of Mirabello, Emilia Romagna region, Italy. In: Geotechnical Earthquake Engineering and Soil Dynamics V, ASCE, p. 10 (2018)

    Google Scholar 

  12. Kevan, L., Rollins, K.M., Coffmann, R., Ishimwe, E.: Full-scale blast liquefaction testing in Arkansas USA to evaluate pile downdrag and neutral plane concepts. In: Silvestri, Moraci (eds.) Earthquake Geotechnical Engineering for Protection and Development of Environment and Constructions, pp. 648–655. Associazione Geotecnica Italiana, Rome, Italy (2019). ISBN 978-0-367-14328-2

    Google Scholar 

  13. Ishimwe, E., Coffman, R.A., Rollins, K.M.: Analysis of post-liquefaction axial capacities of driven pile and drilled shaft foundations. In: Proceedings of the IFCEE, pp. 272–283 (2018)

    Google Scholar 

  14. Lehane, B.M., Bittar, E., Lacasse, S., Liu, Z., Nadim, F.: New CPT methods for evaluation of the axial capacity of driven piles. In: Proceedings of the 5th International Conference on Cone Penetration Testing: (CPT 2022), pp. 3–15. CRC Press (2022)

    Google Scholar 

  15. API. ANSI/API RP 2GEO: Geotechnical and Foundation Design Considerations. ISO 19901-4:2003 (Modified), Petroleum and natural gas industries-Specific requirements for offshore structures, Part 4-Geotechnical and foundation design considerations. 1st edn. API Publishing Services, Washington, DC (2011)

    Google Scholar 

  16. Nordlund, R.L.: Point bearing and shaft friction of piles in sand. Presented at the 5th Annual Short Course on Fundamentals of Deep Foundations Design, University of Missouri-Rolla (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Amoroso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rollins, K., Amoroso, S., Colella, V., Minarelli, L., Ure, D. (2023). Liquefaction-Induced Downdrag on Tapered Piles from Full-Scale Blast Liquefaction Tests. In: Ferrari, A., Rosone, M., Ziccarelli, M., Gottardi, G. (eds) Geotechnical Engineering in the Digital and Technological Innovation Era. CNRIG 2023. Springer Series in Geomechanics and Geoengineering. Springer, Cham. https://doi.org/10.1007/978-3-031-34761-0_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34761-0_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34760-3

  • Online ISBN: 978-3-031-34761-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics