Skip to main content

Working Approach: Field Investigation

  • Chapter
  • First Online:
The Application of Lake Sediments for Climate Studies

Part of the book series: SpringerBriefs in Environmental Science ((BRIEFSENVIRONMENTAL))

  • 113 Accesses

Abstract

The present chapter highlighted the preliminary approach for palaeoclimate studies using lake sediments and discussed the importance of proxy development using modern approach. The purpose of this chapter is to discuss the inportance of field investigation in developing a ‘baseline’ characteristic of individual proxies (e.g., pollen, geochemistry, stable isotopes, grain size, etc.) according to changes in environmental conditions, and utilize those proxies for climate reconstruction. Further, the chapter outlines several preliminary steps such as (i) field investigations – including site and lake selection, understanding geology, and geomorphological parameters in lake catchment; (ii) bathymetric and seismic investigation – to decipher the sediment characteristics and their spatial distribution at the lake bottom; (iii) investigating modern meteorological parameters – for understanding the temporal and spatial variability of real-time modern meteorological conditions; (iv) seasonal measurement of lake parameters such as pH, temperature, dissolved oxygen, etc., to understand the seasonal dynamics of the lake system; and finally (v) samples collection which involves a sequential collection of vegetation, sediments, and water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Also known as catchment or watershed are the area from which precipitation flows and collect in a common region (e.g., outlet or lake basin).

  2. 2.

    ISM or south-west monsoon typically last for 4 months (June to September) contributes major rainfall in south east Asia.

  3. 3.

    Prevailing wind characterised between 30° to 60° latitudes blow from west to east direction. The north-western Himalaya and central Asia dominantly receives moisture from mid-latitude westerlies.

  4. 4.

    Current geological epoch, starts at around 11,700 cal BP. The Holocene is divided into three geological ages: (a) Greenlandian (~11,700 to 8200 cal BP); (b) Northgrippian (8200 to 4200 cal BP); (c) Meghalayan (4200 cal BP to present).

  5. 5.

    Carbonate mineral with chemical composition of CaCO3 (for calcite and aragonite), and MgCO3 (for dolomite)

  6. 6.

    Calibrated before present. Here, the year 1950 is considered as present.

  7. 7.

    Sensor installed on space shuttle to collect earth surface data by remote sensing technology.

  8. 8.

    ASTER sensor is an imaging instrument installed on Terra satellite. The objective of this sensor is to observe land surface temperature, emissivity, elevation data, and reflectance.

  9. 9.

    Anno Domini: Christian era in the Gregorian calendar. The term related to the calibrated radiocarbon ages in calendar years. This period goes forward from 1 BC. For example, the current year is referred as 2021 AD.

  10. 10.

    Wide variety of aquatic vegetations characterized by emergent, floating leaves, or submerged plants with distinct roots and shoots.

  11. 11.

    Upper layer of water column in stratified lake.

  12. 12.

    Bottom layer of water column in stratified lake.

References

  • Anoop, A., Prasad, S., Brauer, A., Naumann, R., & Basavaiah, N. (2010). Reconstructed Holocene climatic variability and paleoseismicity from paleolake sediments in the Spiti Valley, India, EGU General Assembly, 12, 11118.

    Google Scholar 

  • Anoop, A., Prasad, S., Basavaiah, N., Brauer, A., Shahzad, F., & Deenadayalan, K. (2012). Tectonic versus climate influence on landscape evolution: A case study from the upper Spiti Valley, NW Himalaya. Geomorphology, 145–146, 32–44. https://doi.org/10.1016/j.geomorph.2011.10.028

    Article  Google Scholar 

  • Anoop, A., Prasad, S., Krishnan, R., Naumann, R., & Dulski, P. (2013). Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quaternary International, 313–314, 74–84. https://doi.org/10.1016/j.quaint.2013.08.014

    Article  Google Scholar 

  • Basavaiah, N., Wiesner, M. G., Anoop, A., Menzel, P., Nowaczyk, N. R., Deenadayalan, K., Brauer, A., Gaye, B., Naumann, R., Riedel, N., Stebich, M., & Prasad, S. (2014). Physicochemical analyses of surface sediments from the Lonar Lake, Central India – Implications for palaeoenvironmental reconstruction. Fundamental and Applied Limnology, 184, 51–68. https://doi.org/10.1127/1863-9135/2014/0515

    Article  Google Scholar 

  • Berntsson, A., Jansson, K. N., Kylander, M. E., De Vleeschouwer, F., & Bertrand, S. (2015). Late Holocene high precipitation events recorded in lake sediments and catchment geomorphology, Lake Vuoksjávrátje, NW Sweden. Boreas, 44, 676–692. https://doi.org/10.1111/bor.12127

    Article  Google Scholar 

  • Bhat, M. S., Alam, A., Ahmad, B., Kotlia, B. S., Farooq, H., Taloor, A. K., & Ahmad, S. (2019). Flood frequency analysis of river Jhelum in Kashmir basin. Quaternary International, 507, 288–294. https://doi.org/10.1016/j.quaint.2018.09.039

    Article  Google Scholar 

  • Biggs, T. W., Lai, C. T., Chandan, P., Lee, R. M., Messina, A., Lesher, R. S., & Khatoon, N. (2015). Evaporative fractions and elevation effects on stable isotopes of high elevation lakes and streams in arid western Himalaya. Journal of Hydrology, 522, 239–249. https://doi.org/10.1016/j.jhydrol.2014.12.023

    Article  Google Scholar 

  • Bird, B. W., Polisar, P. J., Lei, Y., Thompson, L. G., Yao, T., Finney, B. P., Bain, D. J., Pompeani, D. P., & Steinman, B. A. (2014). A Tibetan lake sediment record of Holocene Indian summer monsoon variability. Earth and Planetary Science Letters, 399, 92–102. https://doi.org/10.1016/j.epsl.2014.05.017

    Article  Google Scholar 

  • Bird, B. W., Lei, Y., Perello, M., Polissar, P. J., Yao, T., Finney, B., Bain, D., Pompeani, D., & Thompson, L. G. (2017). Late-Holocene Indian summer monsoon variability revealed from a 3300-year-long lake sediment record from Nir’pa Co, southeastern Tibet. Holocene, 27, 541–552. https://doi.org/10.1177/0959683616670220

    Article  Google Scholar 

  • Blais, J. M., & Kalff, J. (1995). The influence of lake morphometry on sediment focusing. Limnology and Oceanography, 40, 582–588. https://doi.org/10.4319/lo.1995.40.3.0582

    Article  Google Scholar 

  • Bloesch, J., & Burns, N. (1980). A critical review of sed trap techniques.pdf. Swiss Journal of Hydrology, 42, 5–55.

    Google Scholar 

  • Blottière, L. (2015). The effects of wind-induced mixing on the structure and functioning of shallow freshwater lakes in a context of global change. Biodiversity and Ecology. Université Paris Saclay (COmUE)

    Google Scholar 

  • Bowman, K. P., Lin, J. C., Stohl, A., Draxler, R., Konopka, P., Andrews, A., & Brunner, D. (2013). Input data requirements for Lagrangian trajectory models. Bulletin of the American Meteorological Society, 94, 1051–1058. https://doi.org/10.1175/BAMS-D-12-00076.1

    Article  Google Scholar 

  • Brincat, D., Yamada, K., Ishiwatari, R., Uemura, H., & Naraoka, H. (2000). Molecular-isotopic stratigraphy of long-chain n-alkanes in Lake Baikal Holocene and glacial age sediments. Organic Geochemistry, 31, 287–294. https://doi.org/10.1016/S0146-6380(99)00164-3

    Article  Google Scholar 

  • Catalina Gebhardt, A., Naudts, L., De Mol, L., Klerkx, J., Abdrakhmatov, K., Sobel, E. R., & De Batist, M. (2017). High-amplitude lake-level changes in tectonically active Lake Issyk-Kul (Kyrgyzstan) revealed by high-resolution seismic reflection data. Climate of the Past, 13, 73–92. https://doi.org/10.5194/cp-13-73-2017

    Article  Google Scholar 

  • Chambers, J. W., & Cameron, N. G. (2001). A rod-less piston corer for lake sediments: An improved, rope-operated percussion corer. Journal of Paleolimnology, 25, 117–122. https://doi.org/10.1023/A:1008181406301

    Article  Google Scholar 

  • Corradini, E., Wilken, D., Zanon, M., Groß, D., Lübke, H., Panning, D., Dörfler, W., Rusch, W., Mecking, R., Erkul, E., Pickartz, N., Feeser, I., & Rabbel, W. (2020). Reconstructing the palaeoenvironment at the early Mesolithic site of Lake Duvensee: Ground-penetrating radar and geoarchaeology for 3D facies mapping. The Holocene, 30, 820–833.

    Article  Google Scholar 

  • Cukur, D., Krastel, S., Tomonaga, Y., Schmincke, H. U., Sumita, M., Meydan, A. F., Çağatay, M. N., Toker, M., Kim, S. P., Kong, G. S., & Horozal, S. (2017). Structural characteristics of the Lake Van Basin, eastern Turkey, from high-resolution seismic reflection profiles and multibeam echosounder data: Geologic and tectonic implications. International Journal of Earth Sciences, 106, 239–253. https://doi.org/10.1007/s00531-016-1312-5

    Article  Google Scholar 

  • Daly, C. (2006). Guidelines for assessing the suitability of spatial climate data sets. International Journal of Climatology, 26, 707–721. https://doi.org/10.1002/joc.1322

    Article  Google Scholar 

  • Daut, G., Mäusbacher, R., Baade, J., Gleixner, G., Kroemer, E., Mügler, I., Wallner, J., Wang, J., & Zhu, L. (2010). Late Quaternary hydrological changes inferred from lake level fluctuations of Nam Co (Tibetan Plateau, China). Quaternary International, 218, 86–93. https://doi.org/10.1016/j.quaint.2010.01.001

    Article  Google Scholar 

  • Di Rita, F., & Magri, D. (2019). The 4.2 ka event in the vegetation record of the Central Mediterranean. Climate of the Past, 15, 237–251. https://doi.org/10.5194/cp-15-237-2019

    Article  Google Scholar 

  • Dietze, E., Wünnemann, B., Diekmann, B., Aichner, B., Hartmann, K., Herzschuh, U., IJmker, J., Jin, H., Kopsch, C., Lehmkuhl, F., Li, S., Mischke, S., Niessen, F., Opitz, S., Stauch, G., & Yang, S. (2010). Basin morphology and seismic stratigraphy of Lake Donggi Cona, north-eastern Tibetan Plateau, China. Quaternary International, 218, 131–142. https://doi.org/10.1016/j.quaint.2009.11.035

    Article  Google Scholar 

  • Dietze, E., Słowiński, M., Zawiska, I., Veh, G., & Brauer, A. (2016). Multiple drivers of Holocene lake level changes at a lowland lake in northeastern Germany. Boreas, 45, 828–845. https://doi.org/10.1111/bor.12190

    Article  Google Scholar 

  • Diwate, P., Meena, N. K., Bhushan, R., Pandita, S., Chandana, K. R., & Kumar, P. (2020). Sedimentation rate (210Pb and 137cs), grain size, organic matter and bathymetric studies in Renuka Lake, Himachal Pradesh, India. Himalayan Geology, 41, 51–62.

    Google Scholar 

  • Dubois, N., Saulnier-Talbot, É., Mills, K., Gell, P., Battarbee, R., Bennion, H., Chawchai, S., Dong, X., Francus, P., Flower, R., Gomes, D. F., Gregory-Eaves, I., Humane, S., Kattel, G., Jenny, J. P., Langdon, P., Massaferro, J., McGowan, S., Mikomägi, A., Ngoc, N. T. M., Ratnayake, A. S., Reid, M., Rose, N., Saros, J., Schillereff, D., Tolotti, M., & Valero-Garcés, B. (2018). First human impacts and responses of aquatic systems: A review of palaeolimnological records from around the world. Anthropocene Review, 5, 28–68. https://doi.org/10.1177/2053019617740365

    Article  Google Scholar 

  • Fang, Y., Cheng, W., Zhang, Y., Wang, N., Zhao, S., Zhou, C., Chen, X., & Bao, A. (2016). Changes in inland lakes on the Tibetan Plateau over the past 40 years. Journal of Geographical Sciences, 26, 415–438. https://doi.org/10.1007/s11442-016-1277-0

    Article  Google Scholar 

  • Fee, E. J., Hecky, R. E., Kasian, S. E. M., & Cruikshank, D. R. (1996). Physical and chemical responses of lakes and streams. Limnology and Oceanography, 41, 912–920.

    Article  Google Scholar 

  • Finkl, C. W., & Khalil, S. M. (2005). Vibracore. In Encyclopedia of earth sciences series (pp. 1026–1036). https://doi.org/10.1007/1-4020-3880-1_335

    Chapter  Google Scholar 

  • Fontes, J. C., Gasse, F., & Gibert, E. (1996). Holocene environmental changes in Lake Bangong basin (Western Tibet). Part 1: Chronology and stable isotopes of carbonates of a Holocene lacustrine core. Palaeogeography, Palaeoclimatology, Palaeoecology, 120, 25–47. https://doi.org/10.1016/0031-0182(95)00032-1

    Article  Google Scholar 

  • Fowell, S. J., Hansen, B. C. S., Peck, J. A., Khosbayar, P., & Ganbold, E. (2003). Mid to late Holocene climate evolution of the Lake Telmen Basin, North Central Mongolia, based on palynological data. Quaternary Research, 59, 353–363. https://doi.org/10.1016/S0033-5894(02)00020-0

    Article  Google Scholar 

  • Frew, C. (2014). 4.1.1. Coring Methods. In Geomorphological techniques (Vol. 1, pp. 1–10). British Society of Geomorphology.

    Google Scholar 

  • Giardino, C., Bresciani, M., Stroppiana, D., Oggioni, A., & Morabito, G. (2014). Optical remote sensing of lakes: An overview on Lake Maggiore. Journal of Limnology, 73, 201–214. https://doi.org/10.4081/jlimnol.2014.817

    Article  Google Scholar 

  • Gilli, A., Anselmetti, F. S., Glur, L., & Wirth, S. B. (2013). Lake sediments as archives of recurrence rates and intensities of past flood events. In Dating torrential processes on fans and cones. https://doi.org/10.1007/978-94-007-4336-6

    Chapter  Google Scholar 

  • Glew, J. R., Smol, J. P., & Last, W. M. (2001). Sediment core collection and extrusion. In W. M. Last & J. P. Smol (Eds.), Tracking environmental change using lake sediments – Volume 1: Basin analysis, coring and chronological techniques (pp. 73–170). Kluwer Academic Publishers.

    Google Scholar 

  • Guilizzoni, P., Lami, A., Manca, M., Musazzi, S., & Marchetto, A. (2006). Palaeoenvironmental changes inferred from biological remains in short lake sediment cores from the Central Alps and Dolomites. Hydrobiologia, 562, 167–191. https://doi.org/10.1007/s10750-005-1810-0

    Article  Google Scholar 

  • Günther, F., Witt, R., Schouten, S., Mäusbacher, R., Daut, G., Zhu, L., Xu, B., Yao, T., & Gleixner, G. (2015). Quaternary ecological responses and impacts of the Indian Ocean summer monsoon at Nam Co, southern Tibetan Plateau. Quaternary Science Reviews, 112, 66–77. https://doi.org/10.1016/j.quascirev.2015.01.023

    Article  Google Scholar 

  • Håkanson, L. (1981). Determination of characteristic values for physical and chemical lake sediment parameters. Water Resources Research, 17, 1625–1640.

    Article  Google Scholar 

  • Håkanson, L. (2005). The importance of lake morphometry and catchment characteristics in limnology – Ranking based on statistical analyses. Hydrobiologia, 541, 117–137. https://doi.org/10.1007/s10750-004-5032-7

    Article  Google Scholar 

  • Håkanson, L. (2012). Origin of lakes and their physical characteristics. In L. Bengtsson, R. W. Herschy, & R. W. Fairbridge (Eds.), Encyclopedia of lakes and reservoirs (pp. 585–593). Springer. https://doi.org/10.1007/978-1-4020-4410-6

    Chapter  Google Scholar 

  • Håkansson, L. (1981). On lake bottom dynamics – The energy – Topography factor. Canadian Journal of Earth Sciences, 18, 899–909. https://doi.org/10.1139/e81-086

    Article  Google Scholar 

  • Hannan, H. H., Fuchs, I. R., & Whitenberg, D. C. (1979). Spatial and temporal patterns of temperature, alkalinity, dissolved oxygen and conductivity in an oligo-mesotrophic, deep storage reservoir in Central Texas. Hydrobiologia, 66, 209–221.

    Article  Google Scholar 

  • Havens, K., & Jeppesen, E. (2018). Ecological responses of lakes to climate change. Water (Switzerland), 10, 1–9. https://doi.org/10.3390/w10070917

    Article  Google Scholar 

  • Hellsten, S., & Mjelde, M. (2009). Macrophyte responses to water level fluctuation in Fennoscandinavian Lakes—Applying a common index. SIL Proceedings, 1922–2010, 30, 765–769. https://doi.org/10.1080/03680770.2009.11902235

    Article  Google Scholar 

  • Herzschuh, U., Winter, K., Wünnemann, B., & Li, S. (2006). A general cooling trend on the central Tibetan Plateau throughout the Holocene recorded by the Lake Zigetang pollen spectra. Quaternary International, 154–155, 113–121. https://doi.org/10.1016/j.quaint.2006.02.005

    Article  Google Scholar 

  • Hillman, A. L., O’Quinn, R. F., Abbott, M. B., & Bain, D. J. (2020). A Holocene history of the Indian monsoon from Qilu Lake, southwestern China. Quaternary Science Reviews, 227. https://doi.org/10.1016/j.quascirev.2019.106051

  • Hutchinson, H. G. (1937). Limnological studies in Indian Tibet. Internationale Revue der gesamten Hydrobiologie und Hydrographie, 35, 134–177. https://doi.org/10.1002/iroh.19370350110

    Article  Google Scholar 

  • Isaac, H., & MacCulloch, G. (2004). Adventures with GPR experiments through ice. Record, 29, 1–12.

    Google Scholar 

  • Jana, S., Rajagopalan, B., Alexander, M. A., & Ray, A. J. (2018). Understanding the dominant sources and tracks of moisture for summer rainfall in the Southwest United States. Journal of Geophysical Research: Atmospheres, 123, 4850–4870. https://doi.org/10.1029/2017JD027652

    Article  Google Scholar 

  • Kämpf, L., Mueller, P., Höllerer, H., Plessen, B., Naumann, R., Thoss, H., Güntner, A., Merz, B., & Brauer, A. (2015). Hydrological and sedimentological processes of flood layer formation in Lake Mondsee. The Depositional Record, 1, 18–37. https://doi.org/10.1002/dep2.2

    Article  Google Scholar 

  • Keil, A., Berking, J., Mügler, I., Schütt, B., Schwalb, A., & Steeb, P. (2010). Hydrological and geomorphological basin and catchment characteristics of Lake Nam Co, South-Central Tibet. Quaternary International, 218, 118–130. https://doi.org/10.1016/j.quaint.2009.02.022

    Article  Google Scholar 

  • Kim, J. Y., & Nishihiro, J. (2020). Responses of lake macrophyte species and functional traits to climate and land use changes. Science of the Total Environment, 736, 139628.

    Article  Google Scholar 

  • Kolada, A., Soszka, H., Cydzik, D., & Gołub, M. (2005). Abiotic typology of Polish lakes. Limnologica, 35, 145–150. https://doi.org/10.1016/j.limno.2005.04.001

    Article  Google Scholar 

  • Kotthoff, U., Müller, U. C., Pross, J., Schmiedl, G., Lawson, I. T., Van De Schootbrugge, B., & Schulz, H. (2008). Lateglacial and Holocene vegetation dynamics in the Aegean region: An integrated view based on pollen data from marine and terrestrial archives. Holocene, 18, 1019–1032. https://doi.org/10.1177/0959683608095573

    Article  Google Scholar 

  • Lachhab, A., Booterbaugh, A., & Beren, M. (2015). Bathymetry and sediment accumulation of Walker Lake, PA using two GPR antennas in a new integrated method. Journal of Environmental and Engineering Geophysics, 20, 245–255. https://doi.org/10.2113/JEEG20.3.245

    Article  Google Scholar 

  • Lakewatch. (2001). A beginner’s guide to water management—Water clarity. Aquatic Sciences.

    Google Scholar 

  • Larsen, C. E. S., & Macdonald, G. M. (1994). Lake morphometry, sediment mixing and the selection of sites for fine resolution palaeoecological studies. Quaternary Science Reviews, 12, 781–792.

    Article  Google Scholar 

  • Lauterbach, S., Witt, R., Plessen, B., Dulski, P., Prasad, S., Mingram, J., Gleixner, G., Hettler-Riedel, S., Stebich, M., Schnetger, B., Schwalb, A., & Schwarz, A. (2014). Climatic imprint of the mid-latitude westerlies in the Central Tian Shan of Kyrgyzstan and teleconnections to North Atlantic climate variability during the last 6000 years. Holocene, 24, 970–984. https://doi.org/10.1177/0959683614534741

    Article  Google Scholar 

  • Leng, M. J., & Marshall, J. D. (2004). Palaeoclimate interpretation of stable isotope data from lake sediment archives. Quaternary Science Reviews, 23, 811–831. https://doi.org/10.1016/j.quascirev.2003.06.012

    Article  Google Scholar 

  • Li, H. C., & Ku, T. L. (1997). δ13C-δ18O covariance as a paleohydrological indicator for closed-basin lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 133, 69–80. https://doi.org/10.1016/S0031-0182(96)00153-8

    Article  Google Scholar 

  • Lin, J. C., Gerbig, C., Wofsy, S. C., Andrews, A. E., Daube, B. C., Davis, K. J., & Grainger, C. A. (2003). A near-field tool for simulating the upstream influence of atmospheric observations: The Stochastic Time-Inverted Lagrangian Transport (STILT) model. Journal of Geophysical Research: Atmospheres, 108. https://doi.org/10.1029/2002JD003161

  • Lindhorst, K., Krastel, S., Wagner, B., & Schuerer, A. (2017). Evidence for sub-lacustrine volcanic activity in Lake Bolsena (Central Italy) revealed by high resolution seismic data sets. Journal of Volcanology and Geothermal Research, 340, 143–154. https://doi.org/10.1016/j.jvolgeores.2017.02.022

    Article  Google Scholar 

  • Liu, N., Yu, Y., He, J., & Zhao, S. (2013). Integrated modeling of urban–scale pollutant transport: Application in a semi–arid urban valley, northwestern China. Atmospheric Pollution Research, 4, 306–314.

    Article  Google Scholar 

  • Mason, L. A., Riseng, C. M., Layman, A. J., & Jensen, R. (2018). Effective fetch and relative exposure index maps for the Laurentian Great Lakes. Scientific Data, 5, 1–7. https://doi.org/10.1038/sdata.2018.295

    Article  Google Scholar 

  • McCormack, J., Nehrke, G., Jöns, N., Immenhauser, A., & Kwiecien, O. (2019). Refining the interpretation of lacustrine carbonate isotope records: Implications of a mineralogy-specific Lake Van case study. Chemical Geology, 513, 167–183. https://doi.org/10.1016/j.chemgeo.2019.03.014

    Article  Google Scholar 

  • McGowan, H., & Clark, A. (2008). Identification of dust transport pathways from Lake Eyre, Australia using Hysplit. Atmospheric Environment, 42, 6915–6925. https://doi.org/10.1016/j.atmosenv.2008.05.053

    Article  Google Scholar 

  • Mingram, J., Schettler, G., Nowaczyk, N., Luo, X., Lu, H., Liu, J., & Negendank, J. F. W. (2004). The Huguang maar lake-a high-resolution record of palaeoenvironmental and palaeoclimatic changes over the last 78,000 years from South China. Quaternary International, 122, 85–107. https://doi.org/10.1016/j.quaint.2004.02.001

    Article  Google Scholar 

  • Minyuk, P. S., Borkhodoev, V. Y., & Wennrich, V. (2013). Inorganic data from El’gygytgyn Lake sediments: Stages 6–11. Climate of the Past Discussions, 9, 393–433. https://doi.org/10.5194/cpd-9-393-2013

    Article  Google Scholar 

  • Mischke, S., Kramer, M., Zhang, C., Shang, H., Herzschuh, U., & Erzinger, J. (2008). Reduced early Holocene moisture availability in the Bayan Har Mountains, northeastern Tibetan Plateau, inferred from a multi-proxy lake record. Palaeogeography, Palaeoclimatology, Palaeoecology, 267, 59–76. https://doi.org/10.1016/j.palaeo.2008.06.002

    Article  Google Scholar 

  • Mishra, P. K., Anoop, A., Jehangir, A., Prasad, S., Menzel, P., Schettler, G., Naumann, R., Weise, S., Andersen, N., Yousuf, A. R., & Gaye, B. (2014). Limnology and modern sedimentation patterns in high altitude Tso Moriri Lake, NW Himalaya – Implications for proxy development. Fundamental and Applied Limnology, 185, 329–348. https://doi.org/10.1127/fal/2014/0664

    Article  Google Scholar 

  • Mishra, P. K., Anoop, A., Schettler, G., Prasad, S., Jehangir, A., Menzel, P., Naumann, R., Yousuf, A. R., Basavaiah, N., Deenadayalan, K., Wiesner, M. G., & Gaye, B. (2015). Reconstructed late Quaternary hydrological changes from Lake Tso Moriri, NW Himalaya. Quaternary International, 371, 76–86. https://doi.org/10.1016/j.quaint.2014.11.040

    Article  Google Scholar 

  • Mishra, P. K., Prasad, S., Marwan, N., Anoop, A., Krishnan, R., Gaye, B., Basavaiah, N., Stebich, M., Menzel, P., & Riedel, N. (2018). Contrasting pattern of hydrological changes during the past two millennia from central and northern India: Regional climate difference or anthropogenic impact? Global and Planetary Change, 161, 97–107. https://doi.org/10.1016/j.gloplacha.2017.12.005

    Article  Google Scholar 

  • Mishra, P. K., Prasad, S., Jehangir, A., Anoop, A., Yousuf, A. R., & Gaye, B. (2018). Investigating the role of meltwater versus precipitation seasonality in abrupt lake-level rise in the high-altitude Tso Moriri Lake (India). Palaeogeography, Palaeoclimatology, Palaeoecology, 493, 20–29. https://doi.org/10.1016/j.palaeo.2017.12.026

    Article  Google Scholar 

  • Mishra, V., Aadhar, S., & Mahto, S. S. (2021). Anthropogenic warming and intraseasonal summer monsoon variability amplify the risk of future flash droughts in India. Npj Climate and Atmospheric Science, 4. https://doi.org/10.1038/s41612-020-00158-3

  • Moorman, B. J. (2001). Ground-penetrating radar applications in paleolimnology. In W. M. Last & J. P. Smol (Eds.), Tracking environmental change using lake sediments. Volume 1: Basin analysis, coring, and chronological techniques (pp. 23–47). Kluwer Academic Publishers.

    Google Scholar 

  • Ndiaye, M., Clerc, N., Gorin, G., Girardclos, S., & Fiore, J. (2014). Lake Neuchâtel (Switzerland) seismic stratigraphic record points to the simultaneous Würmian deglaciation of the RhÔne Glacier and Jura Ice Cap. Quaternary Science Reviews, 85, 1–19. https://doi.org/10.1016/j.quascirev.2013.11.017

    Article  Google Scholar 

  • Nguyễn-Văn, H., Schimmelmann, J. P., Nguyễn-Thùy, D., Ojala, A. E. K., Unkel, I., Nguyễn-Đình, T., Fukumoto, Y., Doiron, K. E., Sauer, P. E., Drobniak, A., Ánh Nguyễn, N. T., Đỗ-Trọng, Q., Nguyễn-Thị, H., Nguyễn-Ánh, D., Nguyễn-Văn, T., & Schimmelmann, A. (2020). Environmental history recorded over the last 70 years in Biển Hồ maar sediment, Central Highlands of Vietnam. Quaternary International. https://doi.org/10.1016/j.quaint.2020.05.013

  • Nõges, T. (2009). Relationships between morphometry, geographic location and water quality parameters of European lakes. Hydrobiologia, 633, 33–43. https://doi.org/10.1007/s10750-009-9874-x

    Article  Google Scholar 

  • Peterson, C., & Gustin, M. (2008). Mercury in the air, water and biota at the Great Salt Lake (Utah, USA). Science of the Total Environment, 405, 255–268. https://doi.org/10.1016/j.scitotenv.2008.06.046

    Article  Google Scholar 

  • Phartiyal, B., Sharma, A., Upadhyay, R., Ram-Awatar, A., & Sinha, A. K. (2005). Quaternary geology, tectonics and distribution of palaeo- and present fluvio/glacio lacustrine deposits in Ladakh, NW Indian Himalaya – A study based on field observations. Geomorphology, 65, 241–256. https://doi.org/10.1016/j.geomorph.2004.09.004

    Article  Google Scholar 

  • Prasad, S., Anoop, A., Riedel, N., Sarkar, S., Menzel, P., Basavaiah, N., Krishnan, R., Fuller, D., Plessen, B., Gaye, B., Röhl, U., Wilkes, H., Sachse, D., Sawant, R., Wiesner, M. G., & Stebich, M. (2014). Prolonged monsoon droughts and links to Indo-Pacific warm pool: A Holocene record from Lonar Lake, Central India. Earth and Planetary Science Letters, 391, 171–182. https://doi.org/10.1016/j.epsl.2014.01.043

    Article  Google Scholar 

  • Rawat, S., Gupta, A. K., Srivastava, P., Sangode, S. J., & Jovane, L. (2021). Spatial–temporal heterogeneity in a small lake and its implication for paleoclimate reconstruction. Limnology. https://doi.org/10.1007/s10201-021-00669-9

  • Sabatier, P., Moernaut, J., Bertrand, S., Van Daele, M., Kremer, K., Chaumillon, E., & Arnaud, F. (2022). A review of event deposits in lake sediments. Quaternary, 5, 1–49. https://doi.org/10.3390/quat5030034

    Article  Google Scholar 

  • Sakai, A. (2012). Glacial lakes in the Himalayas: A review on formation and expansion processes. Global Environmental Research, 16, 23–30.

    Google Scholar 

  • Sambuelli, L., & Bava, S. (2012). Case study: A GPR survey on a morainic lake in northern Italy for bathymetry, water volume and sediment characterization. Journal of Applied Geophysics, 81, 48–56. https://doi.org/10.1016/j.jappgeo.2011.09.016

    Article  Google Scholar 

  • Sanchini, A., Szidat, S., Tylmann, W., Vogel, H., Wacnik, A., & Grosjean, M. (2020). A Holocene high-resolution record of aquatic productivity, seasonal anoxia and meromixis from varved sediments of Lake Łazduny, north-eastern Poland: Insight from a novel multi-proxy approach. Journal of Quaternary Science, 35, 1070–1080. https://doi.org/10.1002/jqs.3242

    Article  Google Scholar 

  • Schäfer, A. E., Marchett, C. A., Schuh, S. M., Ahlert, S., & Lanzer, R. M. (2014). Morphological characterization of eighteen lakes of the north and middle coast of Rio Grande do Sul, Brazil. Acta Limnologica Brasiliensia, 26, 199–214. https://doi.org/10.1590/s2179-975x2014000200010

    Article  Google Scholar 

  • Schettler, G., Liu, Q., Mingram, J., & Negendank, J. F. W. (2006). Palaeovariations in the East-Asian monsoon regime geochemically recorded in varved sediments of Lake Sihailongwan (northeast China, Jilin province). Part 1: Hydrological conditions and dust flux. Journal of Paleolimnology. https://doi.org/10.1007/s10933-005-0096-6

  • Schillereff, D. N. (2015). A review of in situ measurement techniques for investigating suspended sediment dynamics in lakes. Geomorphological Techniques (Online Edition), 3(7), 1.

    Google Scholar 

  • Singh, S., Stefanidis, K., Mishra, P.K., (2023). Morphometric study of lake basins from the Indian subcontinent: A critical review. Journal of Earth System Science 132. doi:https://doi.org/10.1007/s12040-022-02030-9

  • Sinha, A., Kathayat, G., Cheng, H., Breitenbach, S. F. M., Berkelhammer, M., Mudelsee, M., Biswas, J., & Edwards, R. L. (2015). Trends and oscillations in the Indian summer monsoon rainfall over the last two millennia. Nature Communications, 6, 1–8. https://doi.org/10.1038/ncomms7309

    Article  Google Scholar 

  • Søndergaard, M., & Jeppesen, E. (2007). Anthropogenic impacts on lake and stream ecosystems, and approaches to restoration. Journal of Applied Ecology, 44, 1089–1094. https://doi.org/10.1111/j.1365-2664.2007.01426.x

    Article  Google Scholar 

  • Srivastava, P., Kumar, A., Mishra, A., Meena, N. K., Tripathi, J. K., Sundriyal, Y. P., Agnihotri, R., & Gupta, A. K. (2013). Early Holocene monsoonal fluctuations in the Garhwal higher Himalaya as inferred from multi-proxy data from the Malari paleolake. Quaternary Research (United States), 80, 447–458. https://doi.org/10.1016/j.yqres.2013.07.006

    Article  Google Scholar 

  • Srivastava, P., Bhambri, R., Kawishwar, P., & Dobhal, D. P. (2013). Water level changes of high altitude lakes in Himalaya-Karakoram from ICESat altimetry. Journal of Earth System Science, 122, 1533–1543. https://doi.org/10.1007/s12040-013-0364-1

    Article  Google Scholar 

  • Stefanidis, K., & Papastergiadou, E. (2012). Relationships between lake morphometry, water quality, and aquatic macrophytes, in Greek lakes. Fresenius Environmental Bulletin, 21, 3018–3026.

    Google Scholar 

  • Stein, A. F., Draxler, R. R., Rolph, G. D., Stunder, B. J. B., Cohen, M. D., & Ngan, F. (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96, 2059–2077.

    Article  Google Scholar 

  • Sterner, R. W., Ostrom, P., Ostrom, N. E., Klump, J. V., Steinman, A. D., Dreelin, E. A., Vander Zanden, M. J., & Fisk, A. T. (2017). Grand challenges for research in the Laurentian Great Lakes, 2510–2523. https://doi.org/10.1002/lno.10585

  • Stohl, A., Forster, C., Frank, A., Seibert, P., & Wotawa, G. (2005). The Lagrangian particle dispersion model FLEXPART version 6.2. Atmospheric Chemistry and Physics, 5, 2461–2474. Discussions: European Geosciences Union.

    Article  Google Scholar 

  • Sturm, M., & Matter, A. (1978). Turbidites and varves in Lake Brienz (Switzerland): Deposition of clastic detritus by density currents (Special publications in International Association of Sedimentology) (pp. 147–168). https://doi.org/10.1002/9781444303698.ch8

    Book  Google Scholar 

  • Talbot, M. R. (1990). A review of the palaeohydrological interpretation of carbon and oxygen isotopic ratios in primary lacustrine carbonates. Chemical Geology: Isotope Geoscience Section, 80, 261–279. https://doi.org/10.1016/0168-9622(90)90009-2

    Article  Google Scholar 

  • Tomecka-Suchoń, S., Gołębiowski, T., Dec, J., & Magiera, J. (2019). Application of GPR and seismic methods for noninvasive examination of glacial and postglacial sediments in the Psia Trawka glade: The Tatra Mts., Poland. Acta Geophysica, 67, 1777–1789.

    Article  Google Scholar 

  • Topp, S. N., Pavelsky, T. M., Jensen, D., Simard, M., & Ross, M. R. V. (2020). Research trends in the use of remote sensing for inland water quality science: Moving towards multidisciplinary applications. Water (Switzerland), 12, 1–34. https://doi.org/10.3390/w12010169

    Article  Google Scholar 

  • Verspagen, J. M. H., Van De Waal, D. B., Finke, J. F., Visser, P. M., Van Donk, E., & Huisman, J. (2014). Rising CO2 levels will intensify phytoplankton blooms in eutrophic and hypertrophic lakes. PLoS One, 9. https://doi.org/10.1371/journal.pone.0104325

  • Vijayaraj, R., & Achyuthan, H. (2015). Distribution of sediments and organic matter source: Berijam Lake, Tamil Nadu. Journal of the Geological Society of India, 86, 620–626.

    Article  Google Scholar 

  • Vincent, W. F. (2009). Effects of climate change on lakes. In Encyclopedia of inland waters (pp. 55–60). https://doi.org/10.1016/B978-012370626-3.00233-7

    Chapter  Google Scholar 

  • Vogel, H., Wagner, B., Zanchetta, G., Sulpizio, R., & Rosén, P. (2010). A paleoclimate record with tephrochronological age control for the last glacial-interglacial cycle from Lake Ohrid, Albania and Macedonia. Journal of Paleolimnology, 44, 295–310. https://doi.org/10.1007/s10933-009-9404-x

    Article  Google Scholar 

  • Wang, J., Zhu, L., Daut, G., Ju, J., Lin, X., Wang, Y., & Zhen, X. (2009). Investigation of bathymetry and water quality of Lake Nam Co, the largest lake on the central Tibetan Plateau, China. Limnology, 10, 149–158. https://doi.org/10.1007/s10201-009-0266-8

    Article  Google Scholar 

  • Wang, Y., Liu, X., & Herzschuh, U. (2010). Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal Central Asia. Earth-Science Reviews, 103, 135–153. https://doi.org/10.1016/j.earscirev.2010.09.004

    Article  Google Scholar 

  • Wernli, B. H., & Davies, H. C. (1997). A Lagrangian-based analysis of extratropical cyclones. I: The method and some applications. Quarterly Journal of the Royal Meteorological Society, 123, 467–489.

    Article  Google Scholar 

  • Wetzel, R. G. (2001). Limnology: Lake and river ecosystems. Gulf Professional Publishing.

    Google Scholar 

  • Wright, H. E. (1991). Coring tips. Journal of Paleolimnology, 6, 37–49. https://doi.org/10.1007/BF00201298

    Article  Google Scholar 

  • Wünnemann, B., Mischke, S., & Chen, F. (2006). A Holocene sedimentary record from Bosten Lake, China. Palaeogeography, Palaeoclimatology, Palaeoecology, 234, 223–238. https://doi.org/10.1016/j.palaeo.2005.10.016

    Article  Google Scholar 

  • Wünnemann, B., Demske, D., Tarasov, P., Kotlia, B. S., Reinhardt, C., Bloemendal, J., Diekmann, B., Hartmann, K., Krois, J., Riedel, F., & Arya, N. (2010). Hydrological evolution during the last 15 kyr in the Tso Kar lake basin (Ladakh, India), derived from geomorphological, sedimentological and palynological records. Quaternary Science Reviews, 29, 1138–1155. https://doi.org/10.1016/j.quascirev.2010.02.017

    Article  Google Scholar 

  • Yan, D., Wünnemann, B., Zhang, Y., Long, H., Stauch, G., Sun, Q., & Cao, G. (2018). Response of lake-catchment processes to Holocene climate variability: Evidences from the NE Tibetan Plateau. Quaternary Science Reviews, 201, 261–279. https://doi.org/10.1016/j.quascirev.2018.10.017

    Article  Google Scholar 

  • Yaseen, T., & Bhat, S. U. (2021). Assessing the nutrient dynamics in a Himalayan Warm Monomictic Lake. Water, Air, and Soil Pollution, 232. https://doi.org/10.1007/s11270-021-05054-x

  • Zhang, Y., Song, C., Band, L. E., Sun, G., & Li, J. (2017). Reanalysis of global terrestrial vegetation trends from MODIS products: Browning or greening? Remote Sensing of Environment, 191, 145–155. https://doi.org/10.1016/j.rse.2016.12.018

    Article  Google Scholar 

  • Zhao, Y., Yu, Z., Chen, F., Zhang, J., & Yang, B. (2009). Vegetation response to Holocene climate change in monsoon-influenced region of China. Earth-Science Reviews, 97, 242–256. https://doi.org/10.1016/j.earscirev.2009.10.007

    Article  Google Scholar 

  • Zhisheng, A., Clemens, S. C., Shen, J., Qiang, X., Jin, Z., Sun, Y., Prell, W. L., Luo, J., Wang, S., Xu, H., Cai, Y., Zhou, W., Liu, X., Liu, W., Shi, Z., Yan, L., Xiao, X., Chang, H., Wu, F., Ai, L., & Lu, F. (2011). Glacial-interglacial Indian summer monsoon dynamics. Science, 333, 719–723. https://doi.org/10.1126/science.1203752

    Article  Google Scholar 

  • Zhu, L., Lü, X., Wang, J., Peng, P., Kasper, T., Daut, G., Haberzettl, T., Frenzel, P., Li, Q., Yang, R., Schwalb, A., & Mäusbacher, R. (2015). Climate change on the Tibetan Plateau in response to shifting atmospheric circulation since the LGM. Scientific Reports, 5, 1–8. https://doi.org/10.1038/srep13318

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, P.K. (2023). Working Approach: Field Investigation. In: The Application of Lake Sediments for Climate Studies. SpringerBriefs in Environmental Science. Springer, Cham. https://doi.org/10.1007/978-3-031-34709-2_2

Download citation

Publish with us

Policies and ethics