Skip to main content

Classification, Input Data, and Key Performance Indicators

  • Chapter
  • First Online:
Energy-Related Material Flow Simulation in Production and Logistics

Abstract

Simulation is a well-known technology for production and logistics, especially for the planning of new systems and the examination of ideas to optimize existing ones. In the past, the main target of such studies has been costs of equipment and personnel, but the continuously stricter view on consumption of energy has shifted this focus towards the analysis of energy consumption and emission of greenhouse gas. In some cases this might be straightforward, e.g., when the resulting production hours can just be multiplied with energy consumption per hour. Many cases, however, are far more complicated and can only be sufficiently analyzed when the detailed dynamics of energy consumption are already considered in the simulation model. Thus, a number of different approaches exist to model energy aspects in simulation models, depending on the goal of the investigation and the kind of production or logistics process. This chapter classifies these approaches in a morphological box and explains the details of the related categories. Furthermore, it discusses the requirements to input data that arise when simulation models are amended with energy components, and discusses the additional results that can be gained from such models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Banks J, Carson JS II, Nelson BL, Nicol DM (2005) Discrete-event system simulation, 4th edn. Prentice Hall, Pearson

    Google Scholar 

  • Colquhoun HL, Levac D, O’Brien KK, Straus S, Tricco AC, Perrier L, Kastner M, Moher D (2014) Scoping reviews: time for clarity in definition, methods, and reporting. J Clin Epidemiol 67(12):1291–1294

    Article  Google Scholar 

  • Dietmair A, Verl A (2010) Energy consumption assessment and optimisation in the design and use phase of machine tools. In: Proceedings of the 17th CIRP international conference on life cycle engineering, Hefei, China, May, pp 116–122

    Google Scholar 

  • Götze U, Northcott D, Schuster P (2015) Investment appraisal: methods and models, 2nd edn. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Heilala J, Vatanen S, Tonteri H, Montonen J, Lind S, Johansson B, Stahre J (2008) Simulation-based sustainable manufacturing system design. In: Mason SJ, Hill RR, Mönch L, Rose O, Jefferson T, Fowler JW (eds) Proceedings of the 2008 Winter Simulation Conference. IEEE, Piscataway, NJ, pp 1922–1930

    Google Scholar 

  • Henriksen JO (2008) Taming the complexity dragon. J Simul 2(1):3–17

    Article  MathSciNet  Google Scholar 

  • Hesselbach J, Herrmann C, Detzer R, Martin L, Thiede S, Lüdemann B (2008) Energy efficiency through optimized coordination of production and technical building services. In: Proceedings of the 15th CIRP international conference on life cycle engineering. Sydney, Australia, pp 624–629

    Google Scholar 

  • Johansson B, Kacker R, Kessel R, McLean C, Sriram R (2009) Utilizing combinatorial testing on discrete event simulation models for sustainable manufacturing. In: Proceedings of 2009 ASME design for manufacturing and the life cycle conference. San Diego, California, USA, pp 1095–1101

    Google Scholar 

  • Junge M (2007) Simulationsgestützte Entwicklung und Optimierung einer energieeffizienten Produktionssteuerung. Ph.D. thesis, University Kassel, Produktion & Energie, Kassel

    Google Scholar 

  • Kouki M, Cardin O, Castagna P, Cornardeau C (2017) Input data management for energy related discrete event simulation modelling. J Clean Prod 141:194–207

    Article  Google Scholar 

  • Pawletta T, Schmidt A, Junglas P (2017) A multimodeling approach for the simulation of energy consumption in manufacturing. Simul Notes Europe 27(2):115–124

    Article  Google Scholar 

  • Peter T, Wenzel S, Reiche L, Fehlbier M (2017) Coupled simulation of energy and material flow—a use case in an aluminum foundry. In: Chan WKV, D’Ambrogio A, Zacharewicz G, Mustafee N, Wainer G, Page E (eds) Proceedings of the 2017 Winter Simulation Conference. IEEE, Piscataway, NJ, pp 3792–3803

    Google Scholar 

  • Peter T, Wenzel S (2015) Simulationsgestützte Planung und Bewertung der Energieeffizienz für Produktionssysteme in der Automobilindustrie. In: Rabe M, Clausen U (eds) Simulation in production und logistics 2015. Fraunhofer, Stuttgart, pp 535–544

    Google Scholar 

  • Poeting M, Prell B, Rabe M, Uhlig T, Wenzel S (2019) Considering energy-related factors in the simulation of logistics systems. In: Mustafee N, Bae KHG, Lazarova-Molnar S, Rabe M, Szabo C, Haas P, Son YJ JW (eds) Proceedings of the 2019 Winter Simulation Conference. IEEE, Piscataway, NJ, pp 1849–1858

    Google Scholar 

  • Rabe M, Spieckermann S, Wenzel S (2008) Verifikation und Validierung für die Simulation in Produktion und Logistik. Springer, Berlin Heidelberg

    Google Scholar 

  • Römer A, Strassburger S (2019) Hybrid system modeling approach for the depiction of the energy consumption in production simulations. In: Mustafee N, Bae K-HG, Lazarova-Molnar S, Rabe M, Szabo C, Haas P, Son YJ (eds) Proceedings of the 2019 Winter Simulation Conference. IEEE, Picataway, NJ, pp 1366–1377

    Google Scholar 

  • Römer A, Rückbrod M, Straßburger S (2018) Eignung kombinierter Simulation zur Darstellung energetischer Aspekte in der Produktionssimulation. In: ASIM 24th Symposium Simulationstechnik. Hamburg, Germany, pp 73–80

    Google Scholar 

  • Römer A (2021) Simulation-based optimization of energy efficiency in production. Springer Gabler, Wiebaden

    Google Scholar 

  • Schenk M, Wirth S, Müller E (2010) Factory planning manual. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Schmidt C, Li W, Thiede S, Kara S, Herrmann C (2015) A methodology for customized prediction of energy consumption in manufacturing industries. Int J Precision Eng Manufact-Green Technol 2:163–172

    Article  Google Scholar 

  • Solding P, Petku D (2005) Applying energy aspects on simulation of energy intensive production systems. In: Kuhl ME, Steiger NM, Armstrong FB, Joines JA (eds) Proceedings of the 2005 Winter Simulation Conference. IEEE, Piscataway, NJ, pp 1428–1432

    Google Scholar 

  • Stoldt J, Schlegel A, Putz M (2016) Enhanced integration of energy-related considerations in discrete event simulation for manufacturing applications. J Simul 2(10):113–122

    Article  Google Scholar 

  • Stoldt J, Prell B, Rabe M, Wenzel S, Thiede S (2021) A Criteria-based database for research and applications of energy-oriented simulation in production and logistics. In: Franke J, Schuderer P (eds) Simulation in Produktion und Logistik 2021. Cuvillier, Göttingen, pp 93–102

    Google Scholar 

  • Stoldt J (2019) Gestaltungsmethodik für Simulationsstudien in Umplanungsprojekten zur Energieeffizienzsteigerung in Fabriken. Ph.D. thesis, TU Chemnitz, Mechanical Engineering, Chemnitz

    Google Scholar 

  • Sturma A, Ritschl V, Dennhardt S, Stamm T (2016) Reviews. In: Ritschl V, Weigl R, Stamm T (eds) Wissenschaftliches Arbeiten und Schreiben. Springer, Berlin Heidelberg, pp 207–221

    Chapter  Google Scholar 

  • Süße M, Stoldt J, Schlegel A, Putz M (2017) Decision procedure for efficient data acquisition for distinct energy prognosis models. Appl Mech Mater 871:114–124

    Article  Google Scholar 

  • Uhlig T, Wenzel S, Peter T, Stoldt J, Schlegel A, Jósvai J (2018) Considering energy in the simulation of manufacturing systems. In: Rabe M, Juan A, Mustafee N, Skoogh A, Jain S. Johansson B (eds) Proceedings of the 2018 Winter Simulation Conference. IEEE, Piscataway, NJ, pp 3275–3286

    Google Scholar 

  • Verein Deutscher Ingenieure (2014) VDI Guideline 3633 simulation of systems in materials handling, logistics and production—Part 1. Fundamentals. Beuth, Berlin

    Google Scholar 

  • Wegener K, Weiss L (2014) Auslegung von ressourceneffizienten Produktionsprozessen und Maschinen. In: Proceedings 3rd International Chemnitz manufacturing colloquium, Chemnitz, 8th–9th April, part 1, pp 61–82

    Google Scholar 

  • Weinert N (2010) Vorgehensweise für Planung und Betrieb energieeffizienter Produktionssysteme. Fraunhofer, Stuttgart

    Google Scholar 

  • Wenzel S, Peter T, Stoldt J, Schlegel A, Groß G, Pitsch H, Rabe M, Seewaldt M (2017) Betrachtungen energetischer Einflussfaktoren in der Simulation in Produktion und Logistik: eine Literaturanalyse. In: Wenzel S, Peter T (eds) Simulation in Produktion und Logistik 2017. Kassel university press, Kassel, pp 9–18

    Google Scholar 

  • Wörrlein B, Straßburger S (2020a) A method for predicting high-resolution time series using sequence-to-sequence models. In: Bae KH, Feng B, Kim S, Lazarova-Molnar S, Zheng Z, Roeder T, Thiesing R (eds) Proceedings of the 2020 Winter Simulation Conference. IEEE, Piscataway, NJ, pp 1075–1086

    Google Scholar 

  • Wörrlein B, Straßburger S (2020b) On the usage of deep learning for modelling energy consumption in simulation models. Simulation Notes Europe 4(30):165–174

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Rabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rabe, M., Stoldt, J., Strassburger, S., von Viebahn, C. (2024). Classification, Input Data, and Key Performance Indicators. In: Wenzel, S., Rabe, M., Strassburger, S., von Viebahn, C. (eds) Energy-Related Material Flow Simulation in Production and Logistics. Springer, Cham. https://doi.org/10.1007/978-3-031-34218-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34218-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34217-2

  • Online ISBN: 978-3-031-34218-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics