Skip to main content

Abstract

Preformulation studies are designed to ensure a pharmaceutical dosage form will be produced within the best scenario of materials and processing conditions to guarantee the required performance and stability. In the context of medicines production by 3D printing, a preformulation protocol for 3D printable dosage forms needs to consider the particularities of additive manufacturing. This chapter proposes to draw guidelines for developing a protocol to perform preformulation studies of such 3D printable medicines. For this, an overview involving both physical and chemical characterization of materials combining several techniques, their fundamentals, and applications is provided. Criteria for designing a preformulation protocol adapted to the printing technology, the processing stages, and the drug product to be manufactured are discussed in light of possible characterization techniques. This step in developing 3D medicines should provide information on the chemical stability and physical properties of materials as well as on drug-excipient interactions. The 3D printing by fused deposition modeling will be the central point of this chapter since this technique is the most widely explored in the pharmaceutical field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alencar LCB, Santana CP, Silva KMA, et al. Thermal study of active pharmaceutical ingredients used as analgesics by DTA and DSC coupled to photovisual system. Chem Thermodyn Thermal Anal. 2022;7:100072.

    Article  Google Scholar 

  • Alves-Silva I, Sá-Barreto LCL, Lima EM, et al. Preformulation studies of itraconazole associated with benznidazole and pharmaceutical excipients. Thermochim. Acta. 2014;575:29–33.

    Google Scholar 

  • ASTM. Standard test method for glass transition temperature (DMA Tg) of polymer matrix composites by dynamic mechanical analysis (DMA); 2015. ASTM – D7028 − 07.

    Google Scholar 

  • ASTM. Standard practice for determination of 2% secant modulus for polyethylene geomembranes; 2018. ASTM – D5323.

    Google Scholar 

  • ASTM. Standard terminology for plastics: dynamic mechanical properties; 2021. ASTM – D4092 − 21.

    Google Scholar 

  • Awad A, Trenfield SJ, Gaisford S, Basit AW. 3D printed medicines: a new branch of digital healthcare. Int J Pharm. 2018;548(1):586–96.

    Article  CAS  PubMed  Google Scholar 

  • Awad A, Fina F, Trenfield S, et al. 3D printed pellets (miniprintlets): a novel, multi-drug, controlled release platform technology. Pharmaceutics. 2019;11:148.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balan V, Mihai C-T, Cojocaru F-D, et al. Vibrational spectroscopy fingerprinting in medicine: from molecular to clinical practice. Materials. 2019;12(18):2884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barberis ME, Palma SD, Gonzo EE, et al. Mathematical and pharmacokinetic approaches for the design of new 3D printing inks using Ricobendazole. Pharm Res. 2022;39(9):2277–29.

    Article  CAS  PubMed  Google Scholar 

  • Barmpalexis P, Karagianni A, Kachrimanis K. Molecular simulations for amorphous drug formulation: polymeric matrix properties relevant to hot-melt extrusion. Eur J Pharm Sci. 2018;119:259–67.

    Article  CAS  PubMed  Google Scholar 

  • Baumann K, Clerc JT. Computer-assisted IR spectra prediction—linked similarity searches for structures and spectra. Anal Chim Acta. 1997;348(1–3):327–43.

    Article  CAS  Google Scholar 

  • Bhuskute H, Shende P, Prabhakar B. 3D printed personalized medicine for cancer: applications for betterment of diagnosis, prognosis and treatment. AAPS PharmSciTech. 2021;23(1):1–12.

    Article  Google Scholar 

  • Boetker J, Water JJ, Aho J, et al. Modifying release characteristics from 3D printed drug-eluting products. Eur J Pharm Sci. 2016;90:47–52.

    Article  CAS  PubMed  Google Scholar 

  • Censi R, Di Martino P. Polymorph impact on the bioavailability and stability of poorly soluble drugs. Molecules. 2015;20(10):18759–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Censi R, Gigliobianco M, Casadidio C, Di Martino P. Hot melt extrusion: highlighting physicochemical factors to be investigated while designing and optimizing a hot melt extrusion process. Pharmaceutics. 2018;10(3):89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crisan AG, Porfire A, Ambrus R, et al. Polyvinyl alcohol-based 3D printed tablets: novel insight into the influence of polymer particle size on filament preparation and drug release performance. Pharmaceuticals. 2021;14(5):418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui M, Pan H, Fang D, et al. Fabrication of high drug loading levetiracetam tablets using semi-solid extrusion 3D printing. J Drug Deliv Sci Technol. 2020;57:101683.

    Article  CAS  Google Scholar 

  • Cunha-Filho M, Araújo MR, Gelfuso GM, Gratieri T. FDM 3D printing of modified drug-delivery systems using hot melt extrusion: a new approach for individualized therapy. Ther Deliv. 2017;8:957–66.

    Article  CAS  PubMed  Google Scholar 

  • Daniel JSP, Cruz JC, Catelani TA, et al. Erythromycin-excipients compatibility studies using the thermal analysis and dynamic thermal infrared spectroscopy coupled with chemometrics. J Therm Anal Calorim. 2020;143(4):3127–35.

    Article  Google Scholar 

  • Dreyer JP, Gross IP, Bellettini IC, Machado VG. Electrospun nanofibers of immiscible blends containing a fluorescence dye: direct investigation of polymer domains. ACS Appl Polym Mater. 2020;2(11):4647–57.

    Article  CAS  Google Scholar 

  • Durig JR, Panikar SS, Klaassen JJ. Far infrared spectroscopy applications. Elsevier; 2017. p. 558–65.

    Google Scholar 

  • Elbadawi M, McCoubrey LE, Gavins FKH, et al. Disrupting 3D printing of medicines with machine learning. Trends Pharmacol Sci. 2021;42(9):745–57.

    Article  CAS  PubMed  Google Scholar 

  • Emel’yanenko VN, Stange P, Feder-Kubis J, et al. Dissecting intermolecular interactions in the condensed phase of ibuprofen and related compounds: the specific role and quantification of hydrogen bonding and dispersion forces. Phys Chem Chem Phys. 2020;22(9):4896–904.

    Article  PubMed  Google Scholar 

  • Enumo A Jr, Gross IP, Saatkamp RH, et al. Evaluation of mechanical, thermal and morphological properties of PLA films plasticized with maleic acid and its propyl ester derivatives. Polym Test. 2020;88:106552.

    Article  CAS  Google Scholar 

  • Espinell JRH, López-Mejías V, Stelzer T. Revealing polymorphic phase transformations in polymer-based hot melt extrusion processes. Crystal growth &amp. Design. 2018;18(4):1995–2002.

    Google Scholar 

  • Figueiredo S, Fernandes AI, Carvalho FG, Pinto JF. Performance and paroxetine stability in tablets manufactured by fused deposition modelling-based 3D printing. J Pharm Pharmacol. 2021;74(1):67–76.

    Article  Google Scholar 

  • Figueroa FR, Espinell JRH, Hernández MH, et al. Polymorphic phase transformations in crystalline solid dispersions: the combined effect of pressure and temperature. Cryst Growth Des. 2022;22(5):2903–9.

    Article  Google Scholar 

  • Follonier N, Doelker E, Cole ET. Various ways of modulating the release of diltiazem hydrochloride from hot-melt extruded sustained release pellets prepared using polymeric materials. J Control Release. 1995;36(3):243–50.

    Article  CAS  Google Scholar 

  • Food and Drug Administration. Technical considerations for additive manufactured medical devices: guidance for industry and food and drug administration staff document, vol. 1. Silver Spring: Center for Devices and Radiological Health; 2017. p. 1–30.

    Google Scholar 

  • Forster A, Hempenstall J, Tucker I, Rades T. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis. Int J Pharm. 2001;226(1–2):147–61.

    Article  CAS  PubMed  Google Scholar 

  • Forster SP, Dippold E, Chiang T. Twin-screw melt granulation for Oral solid pharmaceutical products. Pharmaceutics. 2021;13(5):665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Freire E. Differential scanning calorimetry. Protein stability and folding. Springer; 1995. p. 191–218.

    Book  Google Scholar 

  • Genina N, Holländer J, Jukarainen H, et al. Ethylene vinyl acetate (EVA) as a new drug carrier for 3D printed medical drug delivery devices. Eur J Pharm Sci. 2016;90:53–63.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert AS. Vibrational, rotational and Raman spectroscopy, historical perspective. Elsevier; 2017. p. 600–9.

    Google Scholar 

  • Gopirajah R, Anandharamakrishnan C. Characterization methods for nanoparticles. In: Food nanotechnology. CRC Press; 2019. p. 375–96.

    Chapter  Google Scholar 

  • Govender R, Kissi EO, Larsson A, Tho I. Polymers in pharmaceutical additive manufacturing: a balancing act between printability and product performance. Adv Drug Deliv Rev. 2021;177:113923.

    Article  CAS  PubMed  Google Scholar 

  • Griffiths PR, Shao L. Self-weighted correlation coefficients and their application to measure spectral similarity. Appl Spectrosc. 2009;63(8):916–9.

    Article  CAS  PubMed  Google Scholar 

  • Haser A, Huang S, Listro T, et al. An approach for chemical stability during melt extrusion of a drug substance with a high melting point. Int J Pharm. 2017a;524(1–2):55–64.

    Article  CAS  PubMed  Google Scholar 

  • Haser A, Cao T, Lubach J, et al. Melt extrusion vs. spray drying: the effect of processing methods on crystalline content of naproxen-povidone formulations. Eur J Pharm Sci. 2017b;102:115–25.

    Article  CAS  PubMed  Google Scholar 

  • Henschel H, Andersson AT, Jespers W, et al. Theoretical infrared spectra: quantitative similarity measures and force fields. J Chem Theory Comput. 2020;16(5):3307–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MT, Scoutaris N, Maniruzzaman M, et al. Implementation of transmission NIR as a PAT tool for monitoring drug transformation during HME processing. Eur J Pharm Biopharm. 2015;96:106–16.

    Article  CAS  PubMed  Google Scholar 

  • Jaeger G. The Ehrenfest classification of phase transitions: introduction and evolution. Arch Hist Exact Sci. 1998;53(1):51–81.

    Article  Google Scholar 

  • Kasprzyk P, Benes H, Donato RK, Datta J. The role of hydrogen bonding on tuning hard-soft segments in bio-based thermoplastic poly(ether-urethane)s. J Clean Prod. 2020;274:122678.

    Article  CAS  Google Scholar 

  • Kim JH, Kim K, Jin H-E. Three-dimensional printing for oral pharmaceutical dosage forms. J Pharm Investig. 2022;52:293–317.

    Article  CAS  Google Scholar 

  • Kollamaram G, Croker DM, Walker GM, et al. Low temperature fused deposition modeling (FDM) 3D printing of thermolabile drugs. Int J Pharm. 2018;545(1–2):144–52.

    Article  CAS  PubMed  Google Scholar 

  • Kozuch D, Zhang W, Milner S. Predicting the Flory-Huggins χ parameter for polymers with stiffness mismatch from molecular dynamics simulations. Polymers. 2016;8(6):241.

    Article  PubMed  PubMed Central  Google Scholar 

  • Leyva-Porras C, Cruz-Alcantar P, Espinosa-Solís V, et al. Application of differential scanning calorimetry (DSC) and modulated differential scanning calorimetry (MDSC) in food and drug industries. Polymers. 2019;12(1):5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liaskoni A, Wildman RD, Roberts CJ. 3D printed polymeric drug-eluting implants. Int J Pharm. 2021;597:120330.

    Article  CAS  PubMed  Google Scholar 

  • Lima AL, Pires FQ, Hilgert LA, et al. Oscillatory shear rheology as an in-process control tool for 3D printing medicines production by fused deposition modeling. J Manuf Process. 2022;76:850–62.

    Article  Google Scholar 

  • Liu X, Lu M, Guo Z, et al. Improving the chemical stability of amorphous solid dispersion with Cocrystal technique by hot melt extrusion. Pharm Res. 2011;29(3):806–17.

    Article  CAS  PubMed  Google Scholar 

  • Llanes LC, Clasen SH, Pires ATN, Gross IP. Mechanical and thermal properties of poly(lactic acid) plasticized with dibutyl maleate and fumarate isomers: promising alternatives as biodegradable plasticizers. Eur Polym J. 2021;142:110112.

    Article  CAS  Google Scholar 

  • Maniruzzaman M, Morgan DJ, Mendham AP, et al. Drug–polymer intermolecular interactions in hot-melt extruded solid dispersions. Int J Pharm. 2013;443(1–2):199–208.

    Article  CAS  PubMed  Google Scholar 

  • Markovich RJ, Pidgeon C. Introduction to Fourier Transform Infrared Spectroscopy and Applications in the Pharmaceutical Sciences. Pharm Res. 1991;8:663–675.

    Google Scholar 

  • McDonagh T, Belton P, Qi S. An investigation into the effects of geometric scaling and pore structure on drug dose and release of 3D printed solid dosage forms. Eur J Pharm Biopharm. 2022;177:113–25.

    Article  CAS  PubMed  Google Scholar 

  • McQuarrie DA, Simon JD. Physical chemistry: a molecular approach. Sausalito: University science books; 1997.

    Google Scholar 

  • Mezger T. The rheology handbook: for users of rotational and oscillatory rheometers. European Coatings; 2014.

    Google Scholar 

  • Murata H. Rheology – theory and application to biomaterials, polymerization. IntechOpen; 2012. p. 403–26.

    Google Scholar 

  • Nasereddin JM, Wellner N, Alhijjaj M, et al. Development of a simple mechanical screening method for predicting the feedability of a pharmaceutical FDM 3D printing filament. Pharm Res. 2018;35(8):1–13.

    Article  CAS  Google Scholar 

  • Oliveira PR, Stulzer HK, Bernardi LS, et al. Sibutramine hydrochloride monohydrate. J Therm Anal Calorim. 2009;100(1):277–82.

    Article  Google Scholar 

  • Park BJ, Choi HJ, Moon SJ, et al. Pharmaceutical applications of 3D printing technology: current understanding and future perspectives. J Pharm Investig. 2018;49(6):575–85.

    Google Scholar 

  • Parulski C, Jennotte O, Lechanteur A, Evrard B. Challenges of fused deposition modeling 3D printing in pharmaceutical applications: where are we now? Adv Drug Deliv Rev. 2021;175:113810.

    Article  CAS  PubMed  Google Scholar 

  • Patel NG, Serajuddin ATM. Development of FDM 3D-printed tablets with rapid drug release, high drug-polymer miscibility and reduced printing temperature by applying the acid-base supersolubilization (ABS) principle. Int J Pharm. 2021;600:120524.

    Article  CAS  PubMed  Google Scholar 

  • Pecharsky VK, Zavalij PY. Fundamentals of powder diffraction and structural characterization of materials. Springer; 2009. p. 1–14.

    Google Scholar 

  • Pinho LAG, Lima AL, Sa-Barreto LL, et al. Preformulation studies to guide the production of medicines by fused deposition modeling 3D printing. AAPS PharmSciTech. 2021;22(8):1–12.

    Article  Google Scholar 

  • Prasad E, Islam MT, Goodwin DJ, et al. Development of a hot-melt extrusion (HME) process to produce drug loaded Affinisol 15LV filaments for fused filament fabrication (FFF) 3D printing. Addit Manuf. 2019;29:100776.

    CAS  Google Scholar 

  • Pudipeddi M, Serajuddin ATM. Trends in solubility of polymorphs. J Pharm Sci. 2005;94(5):929–39.

    Article  CAS  PubMed  Google Scholar 

  • Quodbach J, Bogdahn M, Breitkreutz J, et al. Quality of FDM 3D printed medicines for pediatrics: considerations for formulation development, filament extrusion, printing process and printer design. Ther Innov Regul Sci. 2021;56:910–28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reich G. Mid and near infrared spectroscopy. Advances in delivery science and technology. New York: Springer; 2016. p. 61–138.

    Google Scholar 

  • Saerens L, Dierickx L, Quinten T, et al. In-line NIR spectroscopy for the understanding of polymer–drug interaction during pharmaceutical hot-melt extrusion. Eur J Pharm Biopharm. 2012;81(1):230–7.

    Article  CAS  PubMed  Google Scholar 

  • Samaro A, Janssens P, Vanhoorne V, et al. Screening of pharmaceutical polymers for extrusion-based additive manufacturing of patient-tailored tablets. Int J Pharm. 2020;586:119591.

    Article  CAS  PubMed  Google Scholar 

  • Sarode AL, Sandhu H, Shah N, et al. Hot melt extrusion (HME) for amorphous solid dispersions: predictive tools for processing and impact of drug–polymer interactions on supersaturation. Eur J Pharm Sci. 2013;48(3):371–84.

    Article  CAS  PubMed  Google Scholar 

  • Scoutaris N, Ross SA, Douroumis D. 3D printed “Starmix” drug loaded dosage forms for paediatric applications. Pharm Res. 2018;35(2):1–11.

    Article  CAS  Google Scholar 

  • Shaqour B, Abuabiah M, Abdel-Fattah S, et al. Gaining a better understanding of the extrusion process in fused filament fabrication 3D printing: a review. Int J Adv Manuf Technol. 2021;114(5):1279–91.

    Article  Google Scholar 

  • Sheng JJ. Polymer viscoelastic behavior and its effect on field facilities and operations. Modern chemical enhanced oil recovery. Elsevier; 2011. p. 207–38.

    Google Scholar 

  • Silva IA, Lima AL, Gratieri T, et al. Compatibility and stability studies involving polymers used in fused deposition modeling 3D printing of medicines. J Pharm Anal. 2022;12:424–35.

    Article  PubMed  Google Scholar 

  • Stuart BH. Infrared spectroscopy: fundamentals and applications. Wiley; 2004.

    Book  Google Scholar 

  • Sun Y, Lee D, Wang Y, et al. Thermal decomposition behavior of 3D printing filaments made of wood-filled polylactic acid/starch blend. J Appl Polym Sci. 2020;138(9):49944.

    Article  Google Scholar 

  • Tabriz AG, Scoutaris N, Gong Y, et al. Investigation on hot melt extrusion and prediction on 3D printability of pharmaceutical grade polymers. Int J Pharm. 2021;604:120755.

    Article  CAS  PubMed  Google Scholar 

  • Tan DK, Maniruzzaman M, Nokhodchi A. Development and optimisation of novel polymeric compositions for sustained release theophylline caplets (PrintCap) via FDM 3D printing. Polymers. 2019;12(1):27.

    Article  PubMed  PubMed Central  Google Scholar 

  • Than YM, Titapiwatanakun V. Tailoring immediate release FDM 3D printed tablets using a quality by design (QbD) approach. Int J Pharm. 2021;599:120402.

    Article  CAS  PubMed  Google Scholar 

  • Thompson JM. Infrared spectroscopy. Jenny Stanford Publishing; 2018.

    Book  Google Scholar 

  • Tian Y, Booth J, Meehan E, et al. Construction of drug–polymer thermodynamic phase diagrams using Flory–Huggins interaction theory: identifying the relevance of temperature and drug weight fraction to phase separation within solid dispersions. Mol Pharm. 2013;10(1):236–48.

    Article  CAS  PubMed  Google Scholar 

  • Tudorachi N, Chiriac AP. TGA/FTIR/MS study on thermal decomposition of poly(succinimide) and sodium poly(aspartate). Polym Test. 2011;30(4):397–407.

    Article  CAS  Google Scholar 

  • Ueda K, Higashi K, Yamamoto K, Moribe K. The effect of HPMCAS functional groups on drug crystallization from the supersaturated state and dissolution improvement. Int J Pharm. 2014;464(1–2):205–13.

    Article  CAS  PubMed  Google Scholar 

  • Van den Mooter G. The use of amorphous solid dispersions: a formulation strategy to overcome poor solubility and dissolution rate. Drug Discov Today Technol. 2012;9(2):e79–85.

    Article  Google Scholar 

  • van Krevelen DW, Te Nijenhuis K. Properties of polymers: their correlation with chemical structure; their numerical estimation and prediction from additive group contributions. Amsterdam: Elsevier; 2009;189–225.

    Book  Google Scholar 

  • Van Renterghem J, Kumar A, Vervaet C, et al. Elucidation and visualization of solid-state transformation and mixing in a pharmaceutical mini hot melt extrusion process using in-line Raman spectroscopy. Int J Pharm. 2017;517(1–2):119–27.

    Article  PubMed  Google Scholar 

  • Verstraete G, Samaro A, Grymonpré W, et al. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm. 2018;536(1):318–25.

    Article  CAS  PubMed  Google Scholar 

  • West TG, Bradbury TJ. 3D printing: a case of ZipDose® technology – World’s first 3D printing platform to obtain FDA approval for a pharmaceutical product. 3D and 4D Printing in Biomedical Applications; 2018. p. 53–79.

    Google Scholar 

  • Wojnowski W, Kalinowska K, Majchrzak T, et al. Real-time monitoring of the emission of volatile organic compounds from polylactide 3D printing filaments. Sci. Total Environ. 2022;805:150181.

    Google Scholar 

  • Wojtyła S, Klama P, Baran T. Is 3D printing safe? Analysis of the thermal treatment of thermoplastics: ABS, PLA, PET, and nylon. J Occup Environ Hyg. 2017;14(1):80–5.

    Article  Google Scholar 

  • Wu C, McGinity JW. Influence of methylparaben as a solid-state plasticizer on the physicochemical properties of Eudragit® RS PO hot-melt extrudates. Eur J Pharm Biopharm. 2003;56(1):95–100.

    Article  CAS  PubMed  Google Scholar 

  • Xiao M, Sadhanala A, Abdi-Jalebi M, et al. Linking glass-transition behavior to photophysical and charge transport properties of high-mobility conjugated polymers. Adv Funct Mater. 2020;31(7):2007359.

    Article  Google Scholar 

  • Xu P, Li J, Meda A, et al. Development of a quantitative method to evaluate the printability of filaments for fused deposition modeling 3D printing. Int J Pharm. 2020;588:119760.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Wang H, Xu X, Yang G. Strategies and mechanisms to improve the printability of pharmaceutical polymers Eudragit® EPO and Soluplus®. Int J Pharm. 2021;599:120410.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Feng X, Patil H, et al. Coupling 3D printing with hot-melt extrusion to produce controlled-release tablets. Int J Pharm. 2017;519(1–2):186–97.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Vo AQ, Feng X, et al. Pharmaceutical additive manufacturing: a novel tool for complex and personalized drug delivery systems. AAPS PharmSciTech. 2018;19:3388–402.

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Xu P, Vo AQ, et al. Development and evaluation of pharmaceutical 3D printability for hot melt extruded cellulose-based filaments. J Drug Deliv Sci Technol. 2019;52:292–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang K, Fellah N, Shtukenberg AG, et al. Discovery of new polymorphs of the tuberculosis drug isoniazid. CrystEngComm. 2020;22(16):2705–8.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcilio Cunha-Filho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gross, I.P., Lima, A.L., Sá-Barreto, L., Gratieri, T., Gelfuso, G.M., Cunha-Filho, M. (2023). Preformulation of 3D Printable Pharmaceutical Dosage Forms. In: Lamprou, D. (eds) 3D & 4D Printing Methods for Pharmaceutical Manufacturing and Personalised Drug Delivery. AAPS Introductions in the Pharmaceutical Sciences, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-34119-9_7

Download citation

Publish with us

Policies and ethics