Skip to main content

Abstract

Additive manufacturing is a technology that has revolutionized how objects are fabricated. In the last years, the pharmaceutical industry directed its attention to AM technologies, aiming to manufacture medications and devices with advantages such as customization, on-demand manufacturing, reduction of waste, and development of new medications and treatments in shorter times. This chapter presents the materials used for each AM technology, where their form and properties should be in good accordance with the process working principle. This fact defines the materials selections used as the basis to develop pre-formulations for tablets or to fabricate drug delivery devices. Furthermore, an overview of the main applications and future perspectives of pharmaceutical manufacturing and personalized drug delivery are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alhnan MA, Okwuosa TC, Sadia M, Wan K-W, Ahmed W, Arafat B. Emergence of 3D printed dosage forms: opportunities and challenges. Pharm Res. 2016;33(8):1817–32.

    Article  CAS  PubMed  Google Scholar 

  • Almeida A, Claeys B, Remon JP, Vervaet C. Hot-melt extrusion developments in the pharmaceutical industry. In: Douroumis D, editor. Hot-melt extrusion: pharmaceutical applications. Chichester: Wiley; 2012. p. 43–69.

    Chapter  Google Scholar 

  • Andreadis II, Gioumouxouzis CI, Eleftheriadis GK, Fatouros DG. The advent of a new era in digital healthcare: a role for 3D printing technologies in drug manufacturing? Pharmaceutics. 2022;14(3):609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Awad A, Trenfield SJ, Goyanes A, Gaisford S, Basit AW. Reshaping drug development using 3D printing. Drug Discov Today. 2018;23(8):1547–55.

    Article  CAS  PubMed  Google Scholar 

  • Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. 3D printing: principles and pharmaceutical applications of selective laser sintering. Int J Pharm. 2020;586:119594.

    Article  CAS  PubMed  Google Scholar 

  • Awad A, Fina F, Goyanes A, Gaisford S, Basit AW. Advances in powder bed fusion 3D printing in drug delivery and healthcare. Adv Drug Deliv Rev. 2021;174:406–24.

    Article  CAS  PubMed  Google Scholar 

  • Basit AW, Gaisford S. 3D printing of pharmaceuticals. Cham: Springer; 2018.

    Book  Google Scholar 

  • Biron M. Thermoplastics and thermoplastic composites. Oxford: William Andrew; 2018.

    Google Scholar 

  • Boniatti J, Januskaite P, da Fonseca LB, Viçosa AL, Amendoeira FC, Tuleu C, Basit AW, Goyanes A, Ré M-I. Direct powder extrusion 3D printing of praziquantel to overcome neglected disease formulation challenges in paediatric populations. Pharmaceutics. 2021;13(8):1114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Castro Silveira Z, de Freitas MS, Inforçatti Neto P, Noritomi PY, da Silva J. Design development and functional validation of an interchangeable head based on mini screw extrusion applied in an experimental desktop 3-D printer. Int J Rapid Manuf. 2014;4(1):49–65.

    Article  Google Scholar 

  • Dizon JRC, Espera AH Jr, Chen Q, Advincula RC. Mechanical characterization of 3D-printed polymers. Addit Manuf. 2018;20:44–67.

    CAS  Google Scholar 

  • Duan B, Wang M. Customized Ca–P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor. J R Soc Interface. 2010;7(suppl 5):S615–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Duan B, Cheung WL, Wang M. Optimized fabrication of Ca–P/PHBV nanocomposite scaffolds via selective laser sintering for bone tissue engineering. Biofabrication. 2011;3(1):015001.

    Article  PubMed  Google Scholar 

  • Economidou SN, Pere CPP, Reid A, Uddin MJ, Windmill JF, Lamprou DA, Douroumis D. 3D printed microneedle patches using stereolithography (SLA) for intradermal insulin delivery. Mater Sci Eng C. 2019;102:743–55.

    Article  CAS  Google Scholar 

  • Eleftheriadis GK, Ritzoulis C, Bouropoulos N, Tzetzis D, Andreadis DA, Boetker J, Rantanen J, Fatouros DG. Unidirectional drug release from 3D printed mucoadhesive buccal films using FDM technology: in vitro and ex vivo evaluation. Eur J Pharm Biopharm. 2019;144:180–92.

    Article  CAS  PubMed  Google Scholar 

  • Gibson I, Rosen DW, Stucker B, Khorasani M, Rosen D, Stucker B, Khorasani M. Additive manufacturing technologies, vol. 17. Cham: Springer; 2021.

    Book  Google Scholar 

  • Goyanes A, Martinez PR, Buanz A, Basit AW, Gaisford S. Effect of geometry on drug release from 3D printed tablets. Int J Pharm. 2015;494(2):657–63.

    Article  CAS  PubMed  Google Scholar 

  • Grigore ME. Methods of recycling, properties and applications of recycled thermoplastic polymers. Recycling. 2017;2(4):24.

    Article  Google Scholar 

  • Gulrez SK, Al-Assaf S, Phillips GO. Hydrogels: methods of preparation, characterisation and applications. In: Carpi A, editor. Progress in molecular and environmental bioengineering-from analysis and modeling to technology applications. Reijka: InTech; 2011. p. 117–50.

    Google Scholar 

  • Gültekin HE, Tort S, Acartürk F. An effective technology for the development of immediate release solid dosage forms containing low-dose drug: fused deposition modeling 3D printing. Pharm Res. 2019;36(9):1–13.

    Article  Google Scholar 

  • Hatton GB, Yadav V, Basit AW, Merchant HA. Animal farm: considerations in animal gastrointestinal physiology and relevance to drug delivery in humans. J Pharm Sci. 2015;104(9):2747–76.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman AS. Hydrogels for biomedical applications. Adv Drug Deliv Rev. 2012;64:18–23.

    Article  Google Scholar 

  • Hori M, Fujimoto K, Asakura M, Nagase Y, Mieki A, Kawai T. Measurement of exothermic heat released during polymerization of a lightcuring composite resin: comparison of light irradiation modes. Dent Mater J. 2019;38(4):646–53.

    Article  CAS  PubMed  Google Scholar 

  • Hsiao W-K, Lorber B, Reitsamer H, Khinast J. 3D printing of oral drugs: a new reality or hype? Expert Opin Drug Deliv. 2018;15(1):1–4.

    Article  PubMed  Google Scholar 

  • Ilyés K, Kovács NK, Balogh A, Borbás E, Farkas B, Casian T, Marosi G, Tomuță I, Nagy ZK. The applicability of pharmaceutical polymeric blends for the fused deposition modelling (FDM) 3D technique: material considerations–printability–process modulation, with consecutive effects on in vitro release, stability and degradation. Eur J Pharm Sci. 2019;129:110–23.

    Article  PubMed  Google Scholar 

  • International Organization for Standardization/American Society for Testing and Materials. Additive manufacturing-general principles-terminology. Standard: ISO/ASTM; 2015.

    Google Scholar 

  • Jacob GT, Passamai VE, Katz S, Castro GR, Alvarez V. Hydrogels for extrusion-based bioprinting: general considerations. Bioprinting. 2022;27:e00212.

    Article  Google Scholar 

  • Justino Netto JM, Silveira Z d C. Design of an innovative three-dimensional print head based on twin-screw extrusion. J Mech Des. 2018;140(12):125002.

    Article  Google Scholar 

  • Karavasili C, Eleftheriadis GK, Gioumouxouzis C, Andriotis EG, Fatouros DG. Mucosal drug delivery and 3D printing technologies: a focus on special patient populations. Adv Drug Deliv Rev. 2021;176:113858.

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Guan X, Cui M, Zhu Z, Chen K, Wen H, Jia D, Hou J, Xu W, Yang X, et al. Preparation and investigation of novel gastro-floating tablets with 3D extrusion-based printing. Int J Pharm. 2018;535(1–2):325–32.

    Article  CAS  PubMed  Google Scholar 

  • Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R. Polymers for 3D printing and customized additive manufacturing. Chem Rev. 2017;117(15):10212–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lim SH, Kathuria H, Tan JJY, Kang L. 3D printed drug delivery and testing systems—a passing fad or the future? Adv Drug Deliv Rev. 2018;132:139–68.

    Article  CAS  PubMed  Google Scholar 

  • Lind JU, Busbee TA, Valentine AD, Pasqualini FS, Yuan H, Yadid M, Park S-J, Kotikian A, Nesmith AP, Campbell PH, et al. Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater. 2017;16(3):303–8.

    Article  CAS  PubMed  Google Scholar 

  • Lunzer M, Beckwith JS, Chalupa-Gantner F, Rosspeintner A, Licari G, Steiger W, Hametner C, Liska R, Fröhlich J, Vauthey E, et al. Beyondthe threshold: a study of chalcogenophene-based two-photon initiators. Chem Mater. 2022;34(7):3042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Melocchi A, Parietti F, Loreti G, Maroni A, Gazzaniga A, Zema L. 3D printing by fused deposition modeling (FDM) of a swellable/erodible capsular device for oral pulsatile release of drugs. J Drug Deliv Sci Technol. 2015;30:360–7.

    Article  CAS  Google Scholar 

  • Norman J, Madurawe RD, Moore CM, Khan MA, Khairuzzaman A. A new chapter in pharmaceutical manufacturing: 3D-printed drug products. Adv Drug Deliv Rev. 2017;108:39–50.

    Article  CAS  PubMed  Google Scholar 

  • Nukala PK, Palekar S, Solanki N, Fu Y, Patki M, Shohatee AA, Trombetta L, Patel K. Investigating the application of FDM 3D printing pattern in preparation of patient-tailored dosage forms. J 3D Print Med. 2019;3(1):23–37.

    Article  CAS  Google Scholar 

  • Okwuosa TC, Soares C, Gollwitzer V, Habashy R, Timmins P, Alhnan MA. On demand manufacturing of patient-specific liquid capsules via coordinated 3D printing and liquid dispensing. Eur J Pharm Sci. 2018;118:134–43.

    Article  CAS  PubMed  Google Scholar 

  • Oskui SM, Diamante G, Liao C, Shi W, Gan J, Schlenk D, Grover WH. Assessing and reducing the toxicity of 3D-printed parts. Environ Sci Technol Lett. 2016;3(1):1–6.

    Article  CAS  Google Scholar 

  • Otuka AJ, Tomazio NB, Paula KT, Mendonça CR. Two-photon polymerization: functionalized microstructures, micro-resonators, and bio-scaffolds. Polymers. 2021;13(12):1994.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palekar S, Nukala PK, Mishra SM, Kipping T, Patel K. Application of 3D printing technology and quality by design approach for development of age-appropriate pediatric formulation of baclofen. Int J Pharm. 2019;556:106–16.

    Article  CAS  PubMed  Google Scholar 

  • Patel DK, Sakhaei AH, Layani M, Zhang B, Ge Q, Magdassi S. Highly stretchable and UV curable elastomers for digital light processing based 3D printing. Adv Mater. 2017;29(15):1606000.

    Article  Google Scholar 

  • Pavan Kalyan B, Kumar L. 3D printing: applications in tissue engineering, medical devices, and drug delivery. AAPS PharmSciTech. 2022;23(4):1–20.

    Article  Google Scholar 

  • Piedra-Cascón W, Sadeghpour M, Att W, Revilla-León M. A vat-polymerized 3-dimensionally printed dual-material occlusal device: a dental technique. J Prosthet Dent. 2021;126(3):271–5.

    Article  PubMed  Google Scholar 

  • Prasopthum A, Cooper M, Shakesheff KM, Yang J. Three-dimensional printed scaffolds with controlled micro-/nanoporous surface topography direct chondrogenic and osteogenic differentiation of mesenchymal stem cells. ACS Appl Mater Interfaces. 2019;11(21):18896–906.

    Article  CAS  PubMed  Google Scholar 

  • Preis M, Öblom H. 3D-printed drugs for children—are we ready yet? AAPS PharmSciTech. 2017;18(2):303–8.

    Article  PubMed  Google Scholar 

  • Quan H, Zhang T, Xu H, Luo S, Nie J, Zhu X. Photo-curing 3D printing technique and its challenges. Bioact Mater. 2020;5(1):110–5.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rahman Z, Barakh Ali SF, Ozkan T, Charoo NA, Reddy IK, Khan MA. Additive manufacturing with 3d printing: progress from bench to bedside. AAPS J. 2018;20(6):1–14.

    Article  Google Scholar 

  • Reddy RDP, Sharma V. Additive manufacturing in drug delivery applications: a review. Int J Pharm. 2020;589:119820.

    Article  Google Scholar 

  • Revilla-León M, Meyers MJ, Zandinejad A, Özcan M. A review on chemical composition, mechanical properties, and manufacturing work flow of additively manufactured current polymers for interim dental restorations. J Esthet Restor Dent. 2019;31(1):51–7.

    Article  PubMed  Google Scholar 

  • Rudin A, Choi P. The elements of polymer science and engineering. Orlando: Academic Press; 2012.

    Google Scholar 

  • Sastri VR. Plastics in medical devices: properties, requirements and applications. Third Edition. Oxford, UK: William Andrew/Elsevier; 2022. ISBN 9780323851268. https://doi.org/10.1016/B978-0-323-85126-8.00017-5

  • Sharma PK, Choudhury D, Yadav V, Murty U, Banerjee S. 3D printing of nanocomposite pills through desktop vat photopolymerization (stereolithography) for drug delivery reasons. 3D Print Med. 2022;8(1):1–10.

    Article  CAS  Google Scholar 

  • Stanković M, Frijlink HW, Hinrichs WL. Polymeric formulations for drug release prepared by hot melt extrusion: application and characterization. Drug Discov Today. 2015;20(7):812–23.

    Article  PubMed  Google Scholar 

  • Stansbury JW, Idacavage MJ. 3D printing with polymers: challenges among expanding options and opportunities. Dent Mater. 2016;32(1):54–64.

    Article  CAS  PubMed  Google Scholar 

  • Tambe S, Jain D, Agarwal Y, Amin P. Hot-melt extrusion: highlighting recent advances in pharmaceutical applications. J Drug Deliv Sci Technol. 2021;63:102452.

    Article  CAS  Google Scholar 

  • Tan LJ, Zhu W, Zhou K. Recent progress on polymer materials for additive manufacturing. Adv Funct Mater. 2020;30(43):2003062.

    Article  CAS  Google Scholar 

  • Trenfield SJ, Awad A, Goyanes A, Gaisford S, Basit AW. 3D printing pharmaceuticals: drug development to frontline care. Trends Pharmacol Sci. 2018;39(5):440–51.

    Article  CAS  PubMed  Google Scholar 

  • US Food and Drug Administration, et al. Paving the way for personalized medicine: FDA’s role in a new era of medical product development. Silver Spring: US Food and Drug Administration; 2013.

    Google Scholar 

  • Vaut L, Juszczyk JJ, Kamguyan K, Jensen KE, Tosello G, Boisen A. 3D printing of reservoir devices for oral drug delivery: from concept to functionality through design improvement for enhanced mucoadhesion. ACS Biomater Sci Eng. 2020;6(4):2478–86.

    Article  CAS  PubMed  Google Scholar 

  • Verstraete G, Samaro A, Grymonpré W, Vanhoorne V, Van Snick B, Boone M, Hellemans T, Van Hoorebeke L, Remon JP, Vervaet C. 3D printing of high drug loaded dosage forms using thermoplastic polyurethanes. Int J Pharm. 2018;536(1):318–25.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Goyanes A, Gaisford S, Basit AW. Stereolithographic (SLA) 3D printing of oral modified-release dosage forms. Int J Pharm. 2016;503(1–2):207–12.

    Article  CAS  PubMed  Google Scholar 

  • Wu W, Zheng Q, Guo X, Sun J, Liu Y. A programmed release multidrug implant fabricated by three-dimensional printing technology for bone tuberculosis therapy. Biomed Mater. 2009;4(6):065005.

    Article  PubMed  Google Scholar 

  • Xing J-F, Zheng M-L, Duan X-M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem Soc Rev. 2015;44(15):5031–9.

    Article  CAS  PubMed  Google Scholar 

  • Xu X, Awad A, Robles-Martinez P, Gaisford S, Goyanes A, Basit AW. Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. J Control Release. 2021;329:743–57.

    Article  CAS  PubMed  Google Scholar 

  • Yue J, Zhao P, Gerasimov JY, van de Lagemaat M, Grotenhuis A, Rustema-Abbing M, van der Mei HC, Busscher HJ, Herrmann A, Ren Y. 3D-printable antimicrobial composite resins. Adv Funct Mater. 2015;25(43):6756–67.

    Article  CAS  Google Scholar 

  • Zamboulis A, Michailidou G, Koumentakou I, Bikiaris DN. Polysaccharide 3D printing for drug delivery applications. Pharmaceutics. 2022;14(1):145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zarek M, Layani M, Cooperstein I, Sachyani E, Cohn D, Magdassi S. 3D printing of shape memory polymers for flexible electronic devices. Adv Mater. 2016;28(22):4449–54.

    Article  CAS  PubMed  Google Scholar 

  • Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY. Selective laser sintering of porous tissue engineering scaffolds from poly (L-lactide)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci Mater Med. 2008;19(7):2535–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcos Akira d’Ávila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

d’Ávila, M.A., Manzini, B.M., Dávila, J.L. (2023). Material Properties and Selections for Additive Manufacturing (AM). In: Lamprou, D. (eds) 3D & 4D Printing Methods for Pharmaceutical Manufacturing and Personalised Drug Delivery. AAPS Introductions in the Pharmaceutical Sciences, vol 11. Springer, Cham. https://doi.org/10.1007/978-3-031-34119-9_6

Download citation

Publish with us

Policies and ethics