Skip to main content

Nonlocal Diffusion Models with Consistent Local and Fractional Limits

  • Chapter
  • First Online:
A³N²M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models

Part of the book series: The IMA Volumes in Mathematics and its Applications ((IMA,volume 165))

  • 175 Accesses

Abstract

For some spatially nonlocal diffusion models with a finite range of nonlocal interactions measured by a positive parameter \(\delta \), we review their formulation defined on a bounded domain subject to various conditions that correspond to some inhomogeneous data. We consider their consistency to similar inhomogeneous boundary value problems of classical partial differential equation (PDE) models as the nonlocal interaction kernel gets localized in the local \(\delta \to 0\) limit, and at the same time, for rescaled fractional-type kernels, to corresponding inhomogeneous nonlocal boundary value problems of fractional equations in the global \(\delta \to \infty \) limit. Such discussions help to delineate issues related to nonlocal problems defined on a bounded domain with inhomogeneous data.

The research of Q. Du was supported in part by NSF grant DMS-2012562 and DMS-1937254. The research of X. Tian was supported in part by NSF grant DMS-2111608. The research of Z. Zhou is partially supported by Hong Kong Research Grants Council (No. 15303122) and an internal grant of Hong Kong Polytechnic University (Project ID: P0031041, Programme: ZZKS)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. N. Abatangelo and L. Dupaigne, Nonhomogeneous boundary conditions for the spectral fractional Laplacian, Ann. Inst. H. Poincaré Anal. Non Linéaire, 34 (2017), pp. 439–467.

    Article  MathSciNet  MATH  Google Scholar 

  2. G. Acosta, J.-P. Borthagaray, and N. Heuer, Finite element approximations of the nonhomogeneous fractional Dirichlet problem, IMA J. Numer. Anal., 39 (2019), pp. 1471–1501.

    MathSciNet  MATH  Google Scholar 

  3. M. Ainsworth and C. Glusa, Towards an efficient finite element method for the integral fractional Laplacian on polygonal domains, in Contemporary Computational Mathematics—A Celebration of the 80th Birthday of Ian Sloan, Springer, 2018, pp. 17–57.

    Google Scholar 

  4. F. Andreu, J. Mazón, J. Rossi, and J. Toledo, Nonlocal Diffusion Problems, vol. 165 of Mathematical Surveys and Monographs, American Mathematical Society, 2010.

    Google Scholar 

  5. H. Antil, J. Pfefferer, and S. Rogovs, Fractional operators with inhomogeneous boundary conditions: analysis, control, and discretization, Commun. Math. Sci., 16 (2018), pp. 1395–1426.

    Article  MathSciNet  MATH  Google Scholar 

  6. U. Biccari and V. Hernández-Santamaría, The Poisson equation from non-local to local, Electron. J. Differential Equations, (2018), pp. Paper No. 145, 13.

    Google Scholar 

  7. K. Bogdan, K. Burdzy, and Z.-Q. Chen, Censored stable processes, Probab. Theory Related Fields, 127 (2003), pp. 89–152.

    Article  MathSciNet  MATH  Google Scholar 

  8. A. Bonito, J. P. Borthagaray, R. H. Nochetto, E. Otárola, and A. J. Salgado, Numerical methods for fractional diffusion, Computing and Visualization in Science, 19 (2018), pp. 19–46.

    Article  MathSciNet  MATH  Google Scholar 

  9. J. Bourgain, H. Brezis, and P. Mironescu, Another look at Sobolev spaces, IOS Press, 2001, pp. 439–455.

    Google Scholar 

  10. C. Bucur and E. Valdinoci, Nonlocal diffusion and applications, vol. 1, Springer, 2016.

    Google Scholar 

  11. D. Burago, S. Ivanov, and Y. Kurylev, A graph discretization of the Laplace-Beltrami operator, Journal of Spectral Theory, 4 (2014), pp. 675–714.

    Article  MathSciNet  MATH  Google Scholar 

  12. O. Burkovska and M. Gunzburger, Regularity and approximation analyses of nonlocal variational equality and inequality problems, J. Math. Anal. Appl., 478 (2019), pp. 1027–1048.

    Article  MathSciNet  MATH  Google Scholar 

  13. L. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Communications in partial differential equations, 32 (2007), pp. 1245–1260.

    Article  MathSciNet  MATH  Google Scholar 

  14. Z.-Q. Chen and P. Kim, Green function estimate for censored stable processes, Probab. Theory Related Fields, 124 (2002), pp. 595–610.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. R. Coifman and S. Lafon, Diffusion maps, Applied and Computational Harmonic Analysis, 21 (2006), pp. 5–30. Special Issue: Diffusion Maps and Wavelets.

    Google Scholar 

  16. R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, F. Warner, and S. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, in Proceedings of the National Academy of Sciences, 2005, pp. 7426–7431.

    Google Scholar 

  17. C. Cortazar, M. Elgueta, J. Rossi, and N. Wolanski, How to approximate the heat equation with Neumann boundary conditions by nonlocal diffusion problems, Archive for Rational Mechanics and Analysis, 187 (2008), pp. 137–156.

    Article  MathSciNet  MATH  Google Scholar 

  18. G.-H. Cottet and P. D. Koumoutsakos, Vortex methods: theory and practice, Cambridge University Press, 2000.

    Book  MATH  Google Scholar 

  19. N. Cusimano, F. del Teso, L. Gerardo-Giorda, and G. Pagnini, Discretizations of the spectral fractional Laplacian on general domains with Dirichlet, Neumann, and Robin boundary conditions, SIAM J. Numer. Anal., 56 (2018), pp. 1243–1272.

    Article  MathSciNet  MATH  Google Scholar 

  20. M. D’Elia, Q. Du, C. Glusa, M. Gunzburger, X. Tian, and Z. Zhou, Numerical methods for nonlocal and fractional models, Acta Numerica, 29 (2020), pp. 1–124.

    Article  MathSciNet  MATH  Google Scholar 

  21. M. D’Elia, Q. Du, M. Gunzburger, and R. B. Lehoucq, Nonlocal convection-diffusion problems on bounded domains and finite-range jump processes, Comput. Meth. in Appl. Math., 17 (2017), pp. 707–722.

    Article  MathSciNet  MATH  Google Scholar 

  22. M. D’Elia and M. Gunzburger, The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator, Comput. Math. Appl., 66 (2013), pp. 1245–1260.

    Article  MathSciNet  MATH  Google Scholar 

  23. M. D’Elia, X. Tian, and Y. Yu, A physically consistent, flexible, and efficient strategy to convert local boundary conditions into nonlocal volume constraints, SIAM Journal on Scientific Computing, 42 (2020), pp. A1935–A1949.

    Article  MathSciNet  MATH  Google Scholar 

  24. W. Deng, B. Li, W. Tian, and P. Zhang, Boundary problems for the fractional and tempered fractional operators, Multiscale Modeling & Simulation, 16 (2018), pp. 125–149.

    Article  MathSciNet  MATH  Google Scholar 

  25. E. Di Nezza, G. Palatucci, and E. Valdinoci, Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), pp. 521–573.

    Article  MathSciNet  MATH  Google Scholar 

  26. S. Dipierro, X. Ros-Oton, and E. Valdinoci, Nonlocal problems with Neumann boundary conditions, Rev. Mat. Iberoam., 33 (2017), pp. 377–416.

    Article  MathSciNet  MATH  Google Scholar 

  27. Q. Du, Local limits and asymptotically compatible discretizations, in Handbook of peridynamic modeling, Adv. Appl. Math., CRC Press, Boca Raton, FL, 2017, pp. 87–108.

    Google Scholar 

  28. Q. Du, Nonlocal Modeling, Analysis, and Computation, vol. 94 of CBMS-NSF Conference Series in Applied Mathematics, SIAM, 2019.

    Google Scholar 

  29. Q. Du, B. Engquist, and X. Tian, Multiscale modeling, homogenization and nonlocal effects: mathematical and computational issues, in Contemporary Mathematics, Celebrating 75th Anniversary of Mathematics of Computation, vol. 754, AMS, 2020, pp. 115–140.

    Google Scholar 

  30. Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, Analysis and approximation of nonlocal diffusion problems with volume constraints, SIAM Review, 54 (2012), pp. 667–696.

    Article  MathSciNet  MATH  Google Scholar 

  31. Q. Du, M. Gunzburger, R. Lehoucq, and K. Zhou, A nonlocal vector calculus, nonlocal volume-constrained problems, and nonlocal balance laws, Math. Mod. Meth. Appl. Sci., 23 (2013), pp. 493–540.

    Article  MathSciNet  MATH  Google Scholar 

  32. Q. Du, Z. Huang, and R. Lehoucq, Nonlocal convection-diffusion volume constrained problems and jump processes, Disc. Cont. Dyn. Syst. B, 19 (2014), pp. 373–389.

    MathSciNet  MATH  Google Scholar 

  33. Q. Du, L. Ju, X. Li, and Z. Qiao, Maximum bound principle for a class of semilinear parabolic equations and exponential time differencing schemes, SIAM Review, 63 (2021), pp. 317–359.

    Article  MathSciNet  MATH  Google Scholar 

  34. Q. Du, T. Mengesha, and X. Tian, \(L^{p}\)compactness criteria with an application to variational convergence of some nonlocal energy functionals, Preprint, (2022).

    Google Scholar 

  35. Q. Du and Z. Shi, A nonlocal stokes system with volume constraints, Numerical Mathematics, Theory, Methods and Applications, under review (2022).

    Google Scholar 

  36. Q. Du, Y. Tao, and X. Tian, A peridynamic model of fracture mechanics with bond-breaking, Journal of Elasticity, 132 (2018), pp. 197–218.

    Article  MathSciNet  MATH  Google Scholar 

  37. Q. Du and X. Tian, Mathematics of smoothed particle hydrodynamics via a nonlocal stokes equation, Foundations of Computational Mathematics, 20 (2020), pp. 801–826.

    Article  MathSciNet  MATH  Google Scholar 

  38. Q. Du, X. Tian, C. Wright, and Y. Yu, Nonlocal trace spaces and extension results for nonlocal calculus, J. Functional Analysis, to appear, arXiv preprint arXiv:2107.00177 (2022).

    Google Scholar 

  39. Q. Du, L. Toniazzi, and Z. Zhou, Stochastic representation of solution to nonlocal-in-time diffusion, Stochastic Processes and their Applications, 130 (2020), pp. 2058–2085.

    Article  MathSciNet  MATH  Google Scholar 

  40. Q. Du, J. Yang, and Z. Zhou, Analysis of a nonlocal-in-time parabolic equation, Discrete Contin. Dyn. Syst. Ser. B, 22 (2017), pp. 339–368.

    MathSciNet  MATH  Google Scholar 

  41. Q. Du and X. Yin, A conforming DG method for linear nonlocal models with integrable kernels, J. Scientific Computing, 80 (2019), pp. 1913–1935.

    Article  MathSciNet  MATH  Google Scholar 

  42. Q. Du, J. Zhang, and C. Zheng, On uniform second order nonlocal approximations to linear two-point boundary value problems, Communications in Mathematical Sciences, 17 (2019), pp. 1737–1755.

    Article  MathSciNet  MATH  Google Scholar 

  43. B. Dyda and M. Kassmann, Function spaces and extension results for nonlocal Dirichlet problems, Journal of Functional Analysis, 277 (2019), p. 108134.

    Article  MathSciNet  MATH  Google Scholar 

  44. G. Foghem and M. Kassmann, A general framework for nonlocal Neumann problems, arXiv preprint arXiv:2204.06793, (2022).

    Google Scholar 

  45. M. Foss, P. Radu, and Y. Yu, Convergence analysis and numerical studies for linearly elastic peridynamics with Dirichlet-type boundary conditions, arXiv preprint arXiv:2106.13878, (2021).

    Google Scholar 

  46. G. Gilboa and S. Osher, Nonlocal operators with applications to image processing, Multi. Model. Simul., 7 (2008), pp. 1005–1028.

    Article  MathSciNet  MATH  Google Scholar 

  47. G. F. F. Gounoue, \(L^2\)-Theory for nonlocal operators on domains, PhD thesis, Bielefeld University, 2020.

    Google Scholar 

  48. Z. Huang, Nonlocal Models with Convection Effects, PhD thesis, Pennsylvania State University, 2015.

    Google Scholar 

  49. Z. Li, Z. Shi, and J. Sun, Point integral method for elliptic equations with variable coefficients on point cloud, Communications in Computational Physics, 26 (2019), pp. 506–530.

    Article  MathSciNet  MATH  Google Scholar 

  50. W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000.

    MATH  Google Scholar 

  51. T. Mengesha, Nonlocal Korn-type characterization of Sobolev vector fields, Communications in Contemporary Mathematics, 14 (2012), p. 1250028.

    Article  MathSciNet  MATH  Google Scholar 

  52. T. Mengesha and Q. Du, Analysis of a scalar nonlocal peridynamic model with sign changing kernel, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), pp. 1415–1437.

    MathSciNet  MATH  Google Scholar 

  53. T. Mengesha and Q. Du, The bond-based peridynamic system with Dirichlet-type volume constraint, Proceedings of the Royal Society of Edinburgh A: Mathematics, 144 (2014), pp. 161–186.

    Article  MathSciNet  MATH  Google Scholar 

  54. T. Mengesha and Q. Du, On the variational limit of a class of nonlocal functionals related to peridynamics, Nonlinearity, 28 (2015), pp. 3999–4035.

    Article  MathSciNet  MATH  Google Scholar 

  55. T. Mengesha and Q. Du, Characterization of function spaces of vector fields and an application in nonlinear peridynamics, Nonlinear Anal., 140 (2016), pp. 82–111.

    Article  MathSciNet  MATH  Google Scholar 

  56. R. Metzler and J. Klafter, The random walk’s guide to anomalous diffusion: a fractional dynamics approach, Phys. Rep., 339 (2000), p. 77.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Metzler and J. Klafter, The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics, Journal of Physics A: Mathematical and General, 37 (2004), p. R161.

    Article  MathSciNet  MATH  Google Scholar 

  58. J. Monaghan, Smoothed particle hydrodynamics, Reports on progress in physics, 68 (2005), p. 1703.

    Article  MathSciNet  MATH  Google Scholar 

  59. R. Nochetto, E. Otárola, and A. J. Salgado, A PDE approach to fractional diffusion in general domains: a priori error analysis, Found. Comput. Math., 15 (2015), pp. 733–791.

    Article  MathSciNet  MATH  Google Scholar 

  60. G. Pang, M. D’Elia, M. Parks, and G. E. Karniadakis, nPINNs: nonlocal physics-informed neural networks for a parametrized nonlocal universal Laplacian operator. Algorithms and applications, Journal of Computational Physics, 422 (2020), p. 109760.

    Google Scholar 

  61. A. C. Ponce, An estimate in the spirit of Poincaré’s inequality, J. Eur. Math. Soc, 6 (2004), pp. 1–15.

    Article  MathSciNet  MATH  Google Scholar 

  62. R. Servadei and E. Valdinoci, On the spectrum of two different fractional operators, Proc. Roy. Soc. Edinburgh Sect. A, 144 (2014), pp. 831–855.

    Article  MathSciNet  MATH  Google Scholar 

  63. Z. Shi and J. Sun, Convergence of the point integral method for Laplace–Beltrami equation on point cloud, Research in the Mathematical Sciences, 4 (2017), pp. 1–39.

    Article  MathSciNet  MATH  Google Scholar 

  64. S. Silling, Reformulation of elasticity theory for discontinuities and long-range forces, Journal of the Mechanics and Physics of Solids, 48 (2000), pp. 175–209.

    Article  MathSciNet  MATH  Google Scholar 

  65. S. Silling, Introduction to Peridynamics, in Handbook of Peridynamic Modeling, Adv. Appl. Math., CRC Press, Boca Raton, FL, 2017, pp. 25–59.

    Google Scholar 

  66. I. Sokolov, J. Klafter, and A. Blumen, Fractional kinetics, Physics Today, 55 (2002), pp. 48–54.

    Article  Google Scholar 

  67. P. R. Stinga, Fractional powers of second order partial differential operators: extension problem and regularity theory, PhD thesis, UAM, 2010.

    Google Scholar 

  68. P. R. Stinga, User’s guide to the fractional Laplacian and the method of semigroups, in Handbook of fractional calculus with applications. Vol. 2, De Gruyter, Berlin, 2019, pp. 235–265.

    Google Scholar 

  69. Y. Tao, X. Tian, and Q. Du, Nonlocal diffusion and peridynamic models with Neumann type constraints and their numerical approximations, Appl. Math. Comput., 305 (2017), pp. 282–298.

    Article  MathSciNet  MATH  Google Scholar 

  70. H. Tian, L. Ju, and Q. Du, Nonlocal convection-diffusion problems and finite element approximations, Comput. Methods Appl. Mech. Engrg., 289 (2015), pp. 60–78.

    Article  MathSciNet  MATH  Google Scholar 

  71. H. Tian, L. Ju, and Q. Du, A conservative nonlocal convection-diffusion model and asymptotically compatible finite difference discretization, Comput. Methods Appl. Mech. Engrg., 320 (2017), pp. 46–67.

    Article  MathSciNet  MATH  Google Scholar 

  72. X. Tian and Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52 (2014), pp. 1641–1665.

    Article  MathSciNet  MATH  Google Scholar 

  73. X. Tian and Q. Du, Nonconforming discontinuous Galerkin methods for nonlocal variational problems, SIAM J. Numer. Anal., 53 (2015), pp. 762–781.

    Article  MathSciNet  MATH  Google Scholar 

  74. X. Tian and Q. Du, Asymptotically compatible schemes for robust discretization of parametrized problems with applications to nonlocal models, SIAM Review, 62 (2020).

    Google Scholar 

  75. X. Tian, Q. Du, and M. Gunzburger, Asymptotically compatible schemes for the approximation of fractional Laplacian and related nonlocal diffusion problems on bounded domains, Adv. Comput. Math., 42 (2016), pp. 1363–1380.

    Article  MathSciNet  MATH  Google Scholar 

  76. E. Valdinoci, From the long jump random walk to the fractional Laplacian, Bol. Soc. Esp. Mat. Apl. SeMA, 49 (2009), pp. 33–44.

    MathSciNet  MATH  Google Scholar 

  77. H. You, X. Lu, N. Task, and Y. Yu, An asymptotically compatible approach for Neumann-type boundary condition on nonlocal problems, ESAIM: Mathematical Modelling and Numerical Analysis, 54 (2020), pp. 1373–1413.

    Article  MathSciNet  MATH  Google Scholar 

  78. Y. Zhang and Z. Shi, A second-order nonlocal approximation for surface Poisson model with Dirichlet boundary, arXiv preprint arXiv:2101.01016, (2021).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Du .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Du, Q., Tian, X., Zhou, Z. (2023). Nonlocal Diffusion Models with Consistent Local and Fractional Limits. In: Mengesha, T., Salgado, A.J. (eds) A³N²M: Approximation, Applications, and Analysis of Nonlocal, Nonlinear Models. The IMA Volumes in Mathematics and its Applications, vol 165. Springer, Cham. https://doi.org/10.1007/978-3-031-34089-5_5

Download citation

Publish with us

Policies and ethics