Skip to main content

Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13939))

Included in the following conference series:

Abstract

Atlases are crucial to imaging statistics as they enable the standardization of inter-subject and inter-population analyses. While existing atlas estimation methods based on fluid/elastic/diffusion registration yield high-quality results for the human brain, these deformation models do not extend to a variety of other challenging areas of neuroscience such as the anatomy of C. elegans worms and fruit flies. To this end, this work presents a general probabilistic deep network-based framework for atlas estimation and registration which can flexibly incorporate various deformation models and levels of keypoint supervision that can be applied to a wide class of model organisms. Of particular relevance, it also develops a deformable piecewise rigid atlas model which is regularized to preserve inter-observation distances between neighbors. These modeling considerations are shown to improve atlas construction and key-point alignment across a diversity of datasets with small sample sizes including neuron positions in C. elegans hermaphrodites, fluorescence microscopy of male C. elegans, and images of fruit fly wings. Code is accessible at https://github.com/amin-nejat/Deformable-Atlas.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Dirichlet is an appropriate choice for color distribution as its samples sum to one and prior information about expected color can be encoded in its parameters \(\boldsymbol{\alpha }\).

References

  1. Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A fast and log-Euclidean polyaffine framework for locally linear registration. J. Math. Imaging Vis. 33(2), 222–238 (2009)

    Article  MathSciNet  Google Scholar 

  2. Arsigny, V., Pennec, X., Ayache, N.: Polyrigid and polyaffine transformations: a new class of diffeomorphisms for locally rigid or affine registration. In: Ellis, R.E., Peters, T.M. (eds.) MICCAI 2003. LNCS, vol. 2879, pp. 829–837. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39903-2_101

    Chapter  Google Scholar 

  3. Avants, B., Gee, J.C.: Geodesic estimation for large deformation anatomical shape averaging and interpolation. Neuroimage 23, S139–S150 (2004)

    Article  Google Scholar 

  4. Avants, B.B., et al.: The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49(3), 2457–2466 (2010)

    Article  Google Scholar 

  5. Bingham, E., et al.: Pyro: Deep universal probabilistic programming. J. Mach. Learn. Res. 20, 28:1–28:6 (2019)

    Google Scholar 

  6. Bubnis, G., Ban, S., DiFranco, M.D., Kato, S.: A probabilistic atlas for cell identification (2019)

    Google Scholar 

  7. Choe, K.P., Strange, K.: Molecular and genetic characterization of osmosensing and signal transduction in the nematode Caenorhabditis elegans. FEBS J. 274(22), 5782–5789 (2007)

    Article  Google Scholar 

  8. Commowick, O., et al.: An efficient locally affine framework for the smooth registration of anatomical structures. Med. Image Anal. 12(4), 427–441 (2008)

    Article  Google Scholar 

  9. Dalca, A., Rakic, M., Guttag, J., Sabuncu, M.: Learning conditional deformable templates with convolutional networks. In: Advances in Neural Information Processing Systems. vol. 32 (2019)

    Google Scholar 

  10. Davis, B.C., Fletcher, P.T., Bullitt, E., Joshi, S.: Population shape regression from random design data. Int. J. Comput. Vis. 90(2), 255–266 (2010)

    Article  Google Scholar 

  11. Dey, N., Messinger, J., Smith, R.T., Curcio, C.A., Gerig, G.: Robust non-negative tensor factorization, diffeomorphic motion correction, and functional statistics to understand fixation in fluorescence microscopy. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11764, pp. 658–666. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32239-7_73

    Chapter  Google Scholar 

  12. Dey, N., Ren, M., Dalca, A.V., Gerig, G.: Generative adversarial registration for improved conditional deformable templates. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 3929–3941 (2021)

    Google Scholar 

  13. Ding, Z., Niethammer, M.: Aladdin: Joint atlas building and diffeomorphic registration learning with pairwise alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 20784–20793 (2022)

    Google Scholar 

  14. Emmons, S.W., Sternberg, P.W.: Male development and mating behavior (2011)

    Google Scholar 

  15. Greitz, T., Bohm, C., Holte, S., Eriksson, L.: A computerized brain atlas: construction, anatomical content, and some applications. J. Comput. Assist. Tomogr. 15(1), 26–38 (1991)

    Article  Google Scholar 

  16. Heckscher, E.S., et al.: Atlas-builder software and the eNeuro atlas: resources for developmental biology and neuroscience. Development 141(12), 2524–2532 (2014)

    Article  Google Scholar 

  17. Houle, D., Govindaraju, D.R., Omholt, S.: Phenomics: the next challenge. Nat. Rev. Genet. 11(12), 855–866 (2010)

    Article  Google Scholar 

  18. Jones, A.R., Overly, C.C., Sunkin, S.M.: The Allen brain atlas: 5 years and beyond. Nat. Rev. Neurosci. 10(11), 821–828 (2009)

    Article  Google Scholar 

  19. Joshi, S., Davis, B., Jomier, M., Gerig, G.: Unbiased diffeomorphic atlas construction for computational anatomy. Neuroimage 23, S151–S160 (2004)

    Article  Google Scholar 

  20. Kaiser, M., Hilgetag, C.C.: Nonoptimal component placement, but short processing paths, due to long-distance projections in neural systems. PLoS Comput. Biol. 2(7), e95 (2006)

    Article  Google Scholar 

  21. Long, F., Peng, H., Liu, X., Kim, S.K., Myers, E.: A 3D digital atlas of C. elegans and its application to single-cell analyses. Nature Meth. 6(9), 667–672 (2009)

    Article  Google Scholar 

  22. Roland, P., et al.: Human brain atlas: for high-resolution functional and anatomical mapping. Hum. Brain Mapp. 1, 137–184 (1994)

    Article  Google Scholar 

  23. Scheffer, L.K., Meinertzhagen, I.A.: The fly brain atlas. Annu. Rev. Cell Dev. Biol. 35, 637–653 (2019)

    Article  Google Scholar 

  24. Schuh, A., et al.: Unbiased construction of a temporally consistent morphological atlas of neonatal brain development. bioRxiv, p. 251512 (2018)

    Google Scholar 

  25. Skuhersky, M., Wu, T., Yemini, E., Boyden, E., Tegmark, M.: Toward a more accurate 3D atlas of c. elegans neurons. bioRxiv (2021)

    Google Scholar 

  26. Sonnenschein, A., VanderZee, D., Pitchers, W.R., Chari, S., Dworkin, I.: An image database of drosophila melanogaster wings for phenomic and biometric analysis. GigaScience 4(1), s13742-015 (2015)

    Article  Google Scholar 

  27. Sulston, J.E., Horvitz, H.R.: Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56(1), 110–156 (1977)

    Article  Google Scholar 

  28. Szigeti, B., et al.: OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front. Comput. Neurosci. 8, 137 (2014)

    Article  Google Scholar 

  29. Tekieli, T., et al.: Visualizing the organization and differentiation of the male-specific nervous system of C. elegans. Development, 148, dev199687 (2021)

    Google Scholar 

  30. Toyoshima, Y., et al.: An annotation dataset facilitates automatic annotation of whole-brain activity imaging of C. elegans. bioRxiv (2019). https://doi.org/10.1101/698241

  31. Varol, E., et al.: Statistical atlas of C. elegans neurons. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12265, pp. 119–129. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59722-1_12

    Chapter  Google Scholar 

  32. Wustenberg, R.: Carpal bone rigid-body kinematics by log-euclidean polyrigid estimation (2022)

    Google Scholar 

  33. Yemini, E., et al.: Neuropal: a multicolor atlas for whole-brain neuronal identification in C. elegans. Cell 184(1), 272–288 (2021)

    Google Scholar 

  34. Yu, J., et al.: Versatile multiple object tracking in sparse 2D/3D videos via diffeomorphic image registration. bioRxiv (2022)

    Google Scholar 

Download references

Acknowledgements

Paninski: NSF NeuroNex DBI-1707398, Gatsby Charitable Foundation, DMS 1912194, Simons Foundation Collab. on the Global Brain. Yemini: Klingenstein-Simons Fellowship in Neuroscience, Hypothesis Fund. Dey: NIH NIBIB NAC P41EB015902, NIBIB 5R01EB032708. Varol: 1K99MH128772-01A1. Venkatachalam: Burroughs Wellcome Fund and NIH R01 NS126334.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Nejatbakhsh .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 160 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nejatbakhsh, A., Dey, N., Venkatachalam, V., Yemini, E., Paninski, L., Varol, E. (2023). Learning Probabilistic Piecewise Rigid Atlases of Model Organisms via Generative Deep Networks. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics