Skip to main content

Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2023)

Abstract

Patient-specific hemodynamics assessment could support diagnosis and treatment of neurovascular diseases. Currently, conventional medical imaging modalities are not able to accurately acquire high-resolution hemodynamic information that would be required to assess complex neurovascular pathologies. Instead, computational fluid dynamics (CFD) simulations can be applied to tomographic reconstructions to obtain clinically relevant information. However, three-dimensional (3D) CFD simulations require enormous computational resources and simulation-related expert knowledge that are usually not available in clinical environments. Recently, deep-learning-based methods have been proposed as CFD surrogates to improve computational efficiency. Nevertheless, the prediction of high-resolution transient CFD simulations for complex vascular geometries poses a challenge to conventional deep learning models. In this work, we present an architecture that is tailored to predict high-resolution (spatial and temporal) velocity fields for complex synthetic vascular geometries. For this, an octree-based spatial discretization is combined with an implicit neural function representation to efficiently handle the prediction of the 3D velocity field for each time step. The presented method is evaluated for the task of cerebral hemodynamics prediction before and during the injection of contrast agent in the internal carotid artery (ICA). Compared to CFD simulations, the velocity field can be estimated with a mean absolute error of 0.024 m s\(^{-1}\), whereas the run time reduces from several hours on a high-performance cluster to a few seconds on a consumer graphical processing unit.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chnafa, C., et al.: Vessel calibre and flow splitting relationships at the internal carotid artery terminal bifurcation. Physiol. Meas. 38(11), 2044 (2017)

    Article  Google Scholar 

  2. Chnafa, C., Brina, O., Pereira, V., Steinman, D.: Better than nothing: a rational approach for minimizing the impact of outflow strategy on cerebrovascular simulations. AJNR Am. J. Neuroradiol. 39(2), 337–343 (2018)

    Article  Google Scholar 

  3. Du, P., Zhu, X., Wang, J.X.: Deep learning-based surrogate model for three-dimensional patient-specific computational fluid dynamics. Phys. Fluids 34(8), 081906 (2022)

    Article  Google Scholar 

  4. Feiger, B., et al.: Accelerating massively parallel hemodynamic models of coarctation of the aorta using neural networks. Sci. Rep. 10(1), 9508 (2020)

    Article  Google Scholar 

  5. Ferdian, E., et al.: 4DFlowNet: super-resolution 4D flow MRI using deep learning and computational fluid dynamics. Front. Phys. 8 (2020)

    Google Scholar 

  6. Ford, M.D., Alperin, N., Lee, S.H., Holdsworth, D.W., Steinman, D.A.: Characterization of volumetric flow rate waveforms in the normal internal carotid and vertebral arteries. Physiol. Meas. 26(4), 477–488 (2005)

    Article  Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the CVPR, pp. 770–778 (2016)

    Google Scholar 

  8. Hoi, Y., et al.: Characterization of volumetric flow rate waveforms at the carotid bifurcations of older adults. Physiol. Meas. 31(3), 291–302 (2010)

    Article  Google Scholar 

  9. Izzo, R., Steinman, D., Manini, S., Antiga, L.: The vascular modeling toolkit: a python library for the analysis of tubular structures in medical images. J. Open Source Softw. 3(25), 745 (2018)

    Article  Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the ICLR (2015)

    Google Scholar 

  11. Li, G., et al.: Prediction of cerebral aneurysm hemodynamics with porous-medium models of flow-diverting stents via deep learning. Front. Physiol. 12, 733444 (2021)

    Article  Google Scholar 

  12. Li, G., et al.: Prediction of 3D cardiovascular hemodynamics before and after coronary artery bypass surgery via deep learning. Commun. Biol. 4(1), 99 (2021)

    Article  Google Scholar 

  13. Li, Z., et al.: Fourier neural operator for parametric partial differential equations. arXiv (2020)

    Google Scholar 

  14. Lu, L., Jin, P., Pang, G., Zhang, Z., Karniadakis, G.E.: Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators. Nat. Mach. Intell. 3(3), 218–229 (2021)

    Article  Google Scholar 

  15. Meagher, D.: Geometric modeling using octree encoding. Comput. Graph. Image Process. 19(2), 129–147 (1982)

    Article  Google Scholar 

  16. Meister, F., et al.: Fast automatic liver tumor radiofrequency ablation planning via learned physics model. In: Proceedings of the MICCAI, pp. 167–176 (2022)

    Google Scholar 

  17. Mendis, S., Puska, P., Norrving, B., Organization, W.H., Federation, W.H., Organization, W.S.: Global atlas on cardiovascular disease prevention and control (2011)

    Google Scholar 

  18. Mulder, G., Bogaerds, A., Rongen, P., van de Vosse, F.: The influence of contrast agent injection on physiological flow in the circle of Willis. Me. Eng. Phys. 33(2), 195–203 (2011)

    Article  Google Scholar 

  19. Raissi, M., Yazdani, A., Karniadakis, G.E.: Hidden fluid mechanics: learning velocity and pressure fields from flow visualizations. Science 367(6481), 1026–1030 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Proceedings of the MICCAI, pp. 234–241 (2015)

    Google Scholar 

  21. Rutkowski, D.R., Roldán-Alzate, A., Johnson, K.M.: Enhancement of cerebrovascular 4d flow MRI velocity fields using machine learning and computational fluid dynamics simulation data. Sci. Rep. 11(1), 10240 (2021)

    Article  Google Scholar 

  22. Sun, Q., Groth, A., Aach, T.: Comprehensive validation of computational fluid dynamics simulations of in-vivo blood flow in patient-specific cerebral aneurysms. Med. Phys. 39(2), 742–754 (2012)

    Article  Google Scholar 

  23. Taebi, A.: Deep learning for computational hemodynamics: a brief review of recent advances. Fluids 7(6), 197 (2022)

    Article  Google Scholar 

  24. Waechter, I., Bredno, J., Hermans, R., Weese, J., Barratt, D.C., Hawkes, D.J.: Model-based blood flow quantification from rotational angiography. Med. Image Anal. 12(5), 586–602 (2008)

    Article  Google Scholar 

  25. Wang, P.S., Liu, Y., Guo, Y.X., Sun, C.Y., Tong, X.: O-CNN: octree-based convolutional neural networks for 3D shape analysis. ACM Trans. Graph. 36(4), 1–11 (2017)

    Google Scholar 

  26. Wang, P.S., Liu, Y., Tong, X.: Deep octree-based CNNs with output-guided skip connections for 3D shape and scene completion. In: Proceedings of the CVPRW, pp. 1074–1081 (2020)

    Google Scholar 

  27. Weber, J., Penn, J.: Creation and rendering of realistic trees. In: Proceedings of the SIGGRAPH, pp. 119–128. Association for Computing Machinery (1995)

    Google Scholar 

  28. Weller, H.G., Tabor, G., Jasak, H., Fureby, C.: A tensorial approach to computational continuum mechanics using object-oriented techniques. Comput. Phys. 12(6), 620–631 (1998)

    Article  Google Scholar 

  29. Xie, Y., Franz, E., Chu, M., Thuerey, N.: tempoGAN: a temporally coherent, volumetric GAN for super-resolution fluid flow. ACM Trans. Graph. 37(4), 95 (2018)

    Article  Google Scholar 

  30. Yuan, X.Y., et al.: Real-time prediction of transarterial drug delivery based on a deep convolutional neural network. Appl. Sci. 12(20), 10554 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noah Maul .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Maul, N. et al. (2023). Transient Hemodynamics Prediction Using an Efficient Octree-Based Deep Learning Model. In: Frangi, A., de Bruijne, M., Wassermann, D., Navab, N. (eds) Information Processing in Medical Imaging. IPMI 2023. Lecture Notes in Computer Science, vol 13939. Springer, Cham. https://doi.org/10.1007/978-3-031-34048-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34048-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34047-5

  • Online ISBN: 978-3-031-34048-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics