Skip to main content

Real-Time Elastic Partial Shape Matching Using a Neural Network-Based Adjoint Method

  • Conference paper
  • First Online:
Optimization and Learning (OLA 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1824))

Included in the following conference series:

Abstract

Surface matching usually provides significant deformations that can lead to structural failure due to the lack of physical policy. In this context, partial surface matching of non-linear deformable bodies is crucial in engineering to govern structure deformations. In this article, we propose to formulate the registration problem as an optimal control problem using an artificial neural network where the unknown is the surface force distribution that applies to the object and the resulting deformation computed using a hyper-elastic model. The optimization problem is solved using an adjoint method where the hyper-elastic problem is solved using the feed-forward neural network and the adjoint problem is obtained through the backpropagation of the network. Our process improves the computation speed by multiple orders of magnitude while providing acceptable registration errors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995). https://doi.org/10.1137/0916069

    Article  MathSciNet  MATH  Google Scholar 

  2. Faure, F., et al.: SOFA: a multi-model framework for interactive physical simulation. In: Payan, Y. (ed.) Soft Tissue Biomechanical Modeling for Computer Assisted Surgery. SMTEB, vol. 11, pp. 283–321. Springer, Heidelberg (2012). https://doi.org/10.1007/8415_2012_125

  3. Haouchine, N., et al.: Impact of soft tissue heterogeneity on augmented reality for liver surgery. IEEE Trans. Visual. Comput. Graph. 21(5), 584–597 (2015). https://doi.org/10.1109/TVCG.2014.2377772

    Article  Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV) (2015)

    Google Scholar 

  5. Heiselman, J.S., Jarnagin, W.R., Miga, M.I.: Intraoperative correction of liver deformation using sparse surface and vascular features via linearized iterative boundary reconstruction. IEEE Trans. Med. Imaging 39(6), 2223–2234 (2020). https://doi.org/10.1109/TMI.2020.2967322

    Article  Google Scholar 

  6. Khan, S., Green, R.: Gravitational-wave surrogate models powered by artificial neural networks. Phys. Rev. D 103, 064015 (2021). https://doi.org/10.1103/PhysRevD.103.064015

    Article  MathSciNet  Google Scholar 

  7. Malti, A., Bartoli, A., Hartley, R.: A linear least-squares solution to elastic shape-from-template. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1629–1637 (2015)

    Google Scholar 

  8. Marchesseau, S., Chatelin, S., Delingette, H.: Nonlinear biomechanical model of the liver. In: Payan, Y., Ohayon, J. (eds.) Biomechanics of Living Organs, Translational Epigenetics, vol. 1, pp. 243–265. Academic Press, Oxford (2017). https://doi.org/10.1016/B978-0-12-804009-6.00011-0

  9. Mestdagh, G., Cotin, S.: An optimal control problem for elastic registration and force estimation in augmented surgery. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, pp. 74–83. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16449-1_8

    Chapter  Google Scholar 

  10. Odot, A., Haferssas, R., Cotin, S.: DeepPhysics: a physics aware deep learning framework for real-time simulation. Int. J. Numer. Meth. Eng. 123(10), 2381–2398 (2022). https://doi.org/10.1002/nme.6943

    Article  MathSciNet  Google Scholar 

  11. Peterlík, I., et al.: Fast elastic registration of soft tissues under large deformations. Med. Image Anal. 45, 24–40 (2018). ISSN 1361–8415. https://doi.org/10.1016/j.media.2017.12.006

  12. Pfeiffer, M., et al.: Non-rigid volume to surface registration using a data-driven biomechanical model. In: Martel, A.L., et al. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 724–734. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_70

    Chapter  Google Scholar 

  13. Plantefève, R., Peterlik, I., Haouchine, N., Cotin, S.: Patient-specific biomechanical modeling for guidance during minimally-invasive hepatic surgery. Ann. Biomed. Eng. 44(1), 139–153 (2015). https://doi.org/10.1007/s10439-015-1419-z

    Article  Google Scholar 

  14. Renganathan, S.A., Maulik, R., Ahuja, J.: Enhanced data efficiency using deep neural networks and gaussian processes for aerodynamic design optimization. Aerosp. Sci. Technol. 111, 106522 (2021). https://doi.org/10.1016/j.ast.2021.106522

    Article  Google Scholar 

  15. White, D.A., Arrighi, W.J., Kudo, J., Watts, S.E.: Multiscale topology optimization using neural network surrogate models. Comput. Meth. Appl. Mech. Eng. 346, 1118–1135 (2019). https://doi.org/10.1016/j.cma.2018.09.007

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alban Odot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Odot, A., Mestdagh, G., Privat, Y., Cotin, S. (2023). Real-Time Elastic Partial Shape Matching Using a Neural Network-Based Adjoint Method. In: Dorronsoro, B., Chicano, F., Danoy, G., Talbi, EG. (eds) Optimization and Learning. OLA 2023. Communications in Computer and Information Science, vol 1824. Springer, Cham. https://doi.org/10.1007/978-3-031-34020-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-34020-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-34019-2

  • Online ISBN: 978-3-031-34020-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics