Skip to main content

The Final Seconds: How Fish-Birds Catch Prey

  • Chapter
  • First Online:
The Aquatic World of Penguins

Part of the book series: Fascinating Life Sciences ((FLS))

  • 215 Accesses

Abstract

Chapter 3 details how penguins catch all their food underwater where they are hard or impossible to see directly. However, penguin-mounted technology has given us great insights into how these birds catch prey once it has been encountered, both in terms of visuals (via cameras) and performance (speed, acceleration sensors). Most penguins encounter their food in highly productive, open waters, so there is no element of surprise. Even so, birds near solid surfaces, such as the seabed, ice or aqueous “surfaces,” such as a strong thermocline, may use that surface to constrain the prey escape options. Penguins can swim much faster than their typical prey, but the speeds and athleticism they use depend on the prey type. Swarming crustaceans swim so slowly that penguins feeding on them slow down, cruising through the aggregations and snapping up animals using extensions of their neck, like “barnyard fowl picking up corn.” Penguins’ fish prey may swim up to 2 m/s though, and school fish may also adopt highly coordinated escape tactics, so penguins have to accelerate beyond their cruising speeds (of around 2 m/s) to either run their prey down or engage in high-speed corralling behavior. Here, birds swim around the school (often in a flock) compressing it until the inter-fish distance is so small that the coordination is lost and prey can be picked off easily. Many penguin species feeding on aggregating prey take them from the underneath, where the prey are backlit against the surface and bird buoyancy can be used to accelerate the penguins through the aggregation with little effort.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ainley D (1972) Flocking in Adélie penguins. Ibis 114(3):388–390

    Article  Google Scholar 

  2. Becco C, Vandewalle N, Delcourt J, Poncin P (2006) Experimental evidences of a structural and dynamical transition in fish school. Phys A Stat Mech Appl 367:487–493

    Article  Google Scholar 

  3. Berlincourt M, Arnould JP (2014) At-sea associations in foraging little penguins. PLoS One 9(8):e105065

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bost C-A, Handrich Y, Butler P, Fahlman A, Halsey L, Woakes A, Ropert-Coudert Y (2007) Changes in dive profiles as an indicator of feeding success in king and Adélie penguins. Deep-Sea Res II Top Stud Oceanogr 54(3–4):248–255

    Article  Google Scholar 

  5. Brierley AS, Cox MJ (2010) Shapes of krill swarms and fish schools emerge as aggregation members avoid predators and access oxygen. Curr Biol 20(19):1758–1762

    Article  CAS  PubMed  Google Scholar 

  6. Brisson-Curadeau É, Handrich Y, Elliott KH, Bost C-A (2021) Accelerometry predicts prey-capture rates in the deep-diving king penguin Aptenodytes patagonicus. Mar Biol 168(10):1–10

    Article  Google Scholar 

  7. Cairns DK, Gaston AJ, Huettmann F (2008) Endothermy, ectothermy and the global structure of marine vertebrate communities. Mar Ecol Prog Ser 356:239–250

    Article  Google Scholar 

  8. Cannell B (1994) The Feeding Behaviour of Little Penguins, Eudyptula minor (Forster). Monash University

    Google Scholar 

  9. Cannell BL, Cullen J (1998) The foraging behaviour of little penguins Eudyptula minor at different light levels. Ibis 140(3):467–471

    Article  Google Scholar 

  10. Carroll G, Slip D, Jonsen I, Harcourt R (2014) Supervised accelerometry analysis can identify prey capture by penguins at sea. J Exp Biol 217(24):4295–4302

    PubMed  Google Scholar 

  11. Case JF, Warner J, Barnes AT, Lowenstine M (1977) Bioluminescence of lantern fish (Myctophidae) in response to changes in light intensity. Nature 265(5590):179–181

    Article  CAS  PubMed  Google Scholar 

  12. Cloyed CS, Grady JM, Savage VM, Uyeda JC, Dell AI (2021) The allometry of locomotion. Ecology:e03369

    Google Scholar 

  13. Davis MP, Holcroft NI, Wiley EO, Sparks JS, Smith WL (2014) Species-specific bioluminescence facilitates speciation in the deep sea. Mar Biol 161(5):1139–1148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Del Caño M, Quintana F, Yoda K, Dell’omo G, Blanco GS, Gómez-Laich A (2021) Fine-scale body and head movements allow to determine prey capture events in the Magellanic Penguin (Spheniscus magellanicus). Mar Biol 168(6):1–15

    Google Scholar 

  15. Domenici P (2001) The scaling of locomotor performance in predator–prey encounters: from fish to killer whales. Comp Biochem Physiol A Mol Integr Physiol 131(1):169–182

    Article  CAS  PubMed  Google Scholar 

  16. Domenici P, Blake R (1997) The kinematics and performance of fish fast-start swimming. J Exp Biol 200(8):1165–1178

    Article  CAS  PubMed  Google Scholar 

  17. Domenici P, Blake RW (1993) The effect of size on the kinematics and performance of angelfish (Pterophyllum eimekei) escape responses. Can J Zool 71(11):2319–2326

    Article  Google Scholar 

  18. Domenici P, Blake RW (1993) Escape trajectories in angelfish (Pterophyllum eimekei). J Exp Biol 177(1):253–272

    Article  Google Scholar 

  19. Eastman JT (1993) Antarctic fish biology: evolution in a unique environment. Academic, San Diego

    Google Scholar 

  20. Falla RA (1937) Birds. B.A.N.Z. Antarctic Research Expedition 1929–1931. Rep Ser B 2:1–288

    Google Scholar 

  21. Faucher K, Parmentier E, Becco C, Vandewalle N, Vandewalle P (2010) Fish lateral system is required for accurate control of shoaling behaviour. Anim Behav 79(3):679–687

    Article  Google Scholar 

  22. Fuiman L, Davis R, Williams T (2002) Behavior of midwater fishes under the Antarctic ice: observations by a predator. Mar Biol 140(4):815–822

    Article  Google Scholar 

  23. Gazda SK, Connor RC, Edgar RK, Cox F (2005) A division of labour with role specialization in group–hunting bottlenose dolphins (Tursiops truncatus) off Cedar Key, Florida. Proc R Soc B Biol Sci 272(1559):135–140

    Article  Google Scholar 

  24. Goetz KT, Mcdonald BI, Kooyman GL (2018) Habitat preference and dive behavior of non-breeding emperor penguins in the eastern Ross Sea, Antarctica. Mar Ecol Prog Ser 593:155–171

    Article  Google Scholar 

  25. Gunner RM, Holton MD, Scantlebury MD, Van Schalkwyk L, English HM, Williams HJ, Hopkins P, Quintana F, Gómez-Laich A, Börger L (2021) Dead-reckoning animal movements in R–A reappraisal using Gundog. Anim Biotelemetry 9:23. https://doi.org/10.1186/s40317-021-00245-z

    Article  Google Scholar 

  26. Hanuise N, Bost C-A, Huin W, Auber A, Halsey LG, Handrich Y (2010) Measuring foraging activity in a deep-diving bird: comparing wiggles, oesophageal temperatures and beak-opening angles as proxies of feeding. J Exp Biol 213(22):3874–3880

    Article  PubMed  Google Scholar 

  27. Hinke JT, Russell TM, Hermanson VR, Brazier L, Walden SL (2021) Serendipitous observations from animal-borne video loggers reveal synchronous diving and equivalent simultaneous prey capture rates in chinstrap penguins. Mar Biol 168(8):1–12

    Article  Google Scholar 

  28. Hoar J, Sim E, Webber D, O’dor R (1994) The role of fins in the competition between squid and fish. In: Mechanics and physiology of animal swimming. Cambridge University Press, Cambridge, pp 27–43

    Chapter  Google Scholar 

  29. Howland HC, Sivak JG (1984) Penguin vision in air and water. Vis Res 24(12):1905–1909

    Article  CAS  PubMed  Google Scholar 

  30. Hui CA (1985) Maneuverability of the Humboldt penguin (Spheniscus humboldti) during swimming. Can J Zool 63(9):2165–2167

    Article  Google Scholar 

  31. Hulley PA, Pa H (1981) Results of the research cruises of FRV “Walther Herwig” to South America. LVIII. Family Myctophidae (Osteichthyes, Myctophiformes). Arch FischWissenschaft 31:1–300

    Google Scholar 

  32. Kirkwood R, Robertson G (1997) The foraging ecology of female emperor penguins in winter. Ecol Monogr 67(2):155–176

    Article  Google Scholar 

  33. Kirkwood R, Robertson G (1997) Seasonal change in the foraging ecology of emperor penguins on the Mawson Coast, Antarctica. Mar Ecol Prog Ser 156:205–223

    Article  Google Scholar 

  34. Kokubun N, Kim J-H, Shin H-C, Naito Y, Takahashi A (2011) Penguin head movement detected using small accelerometers: a proxy of prey encounter rate. J Exp Biol 214(22):3760–3767

    Article  PubMed  Google Scholar 

  35. Krause J, Ruxton GD, Ruxton G, Ruxton IG (2002) Living in groups. Oxford University Press, Oxford

    Book  Google Scholar 

  36. Lehtonen J, Jaatinen K (2016) Safety in numbers: the dilution effect and other drivers of group life in the face of danger. Behav Ecol Sociobiol 70(4):449–458

    Article  Google Scholar 

  37. Lescroel A, Ridoux V, Bost CA (2004) Spatial and temporal variation in the diet of the gentoo penguin (Pygoscelis papua) at Kerguelen Islands. Polar Biol 27(4):206–216

    Article  Google Scholar 

  38. Martin GR (1999) Eye structure and foraging in King Penguins Aptenodytes patagonicus. Ibis 141(3):444–450

    Article  Google Scholar 

  39. Mattern T, Mcpherson MD, Ellenberg U, Van Heezik Y, Seddon PJ (2018) High definition video loggers provide new insights into behaviour, physiology, and the oceanic habitat of a marine predator, the yellow-eyed penguin. PeerJ 6:e5459

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mcinnes AM, Mcgeorge C, Ginsberg S, Pichegru L, Pistorius PA (2017) Group foraging increases foraging efficiency in a piscivorous diver, the African penguin. R Soc Open Sci 4(9):170918

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mills KL (1998) Multispecies seabird feeding flocks in the Galápagos Islands. Condor 100(2):277–285

    Article  Google Scholar 

  42. Montgomery JC, Foster BA, Cargill JM (1989) Stomach evacuation rate in the planktivorous Antarctic fish Pagothenia borchgrevinki. Polar Biol 9(6):405–408

    Article  Google Scholar 

  43. Norris KS, Schilt CR (1988) Cooperative societies in three-dimensional space: on the origins of aggregations, flocks, and schools, with special reference to dolphins and fish. Ethol Sociobiol 9(2-4):149–179

    Article  Google Scholar 

  44. O’brien D, Ritz D (1988) Escape responses of gregarious mysids (Crustacea: Mysidacea): towards a general classification of escape responses in aggregated crustaceans. J Exp Mar Biol Ecol 116(3):257–272

    Article  Google Scholar 

  45. O’brien D (1987) Description of escape responses of krill (Crustacea: Euphausiacea), with particular reference to swarming behavior and the size and proximity of the predator. J Crustac Biol 7(3):449–457

    Article  Google Scholar 

  46. Paitio J, Yano D, Muneyama E, Takei S, Asada H, Iwasaka M, Oba Y (2020) Reflector of the body photophore in lanternfish is mechanistically tuned to project the biochemical emission in photocytes for counterillumination. Biochem Biophys Res Commun 521(4):821–826

    Article  CAS  PubMed  Google Scholar 

  47. Parrish JK (1991) Do predators 'shape' fish schools: interactions between predators and their schooling prey. Neth J Zool 42(2-3):358–370

    Article  Google Scholar 

  48. Perissinotto R, Mcquaid CD (1992) Land-based predator impact on vertically migrating zooplankton and micronekton advected to a Southern Ocean Archipelago. Mar Ecol Progr Ser Oldendorf 80(1):15–27

    Article  Google Scholar 

  49. Pinti J, Visser AW (2019) Predator-prey games in multiple habitats reveal mixed strategies in diel vertical migration. Am Nat 193(3):E65–E77

    Article  PubMed  Google Scholar 

  50. Pitcher TJ (1986) Functions of shoaling behaviour in teleosts. In: The behaviour of teleost fishes. Springer, Boston, pp 294–337. https://doi.org/10.1007/978-1-4684-8261-4_12

    Chapter  Google Scholar 

  51. Pitcher TJ (2012) The behaviour of teleost fishes. Springer Science & Business Media, Dordrecht

    Google Scholar 

  52. Ponganis P, Van Dam R, Marshall G, Knower T, Levenson D (2000) Sub-ice foraging behavior of emperor penguins. J Exp Biol 203(21):3275–3278

    Article  CAS  PubMed  Google Scholar 

  53. Pütz K, Cherel Y (2005) The diving behaviour of brooding king penguins (Aptenodytes patagonicus) from the Falkland Islands: variation in dive profiles and synchronous underwater swimming provide new insights into their foraging strategies. Mar Biol 147(2):281–290

    Article  Google Scholar 

  54. Rand RW (1960) The distribution, abundance and feeding habits of the Cape Penguin (Spheniscus demersus) off the South-western coast of the Cape Province. Division of Fisheries, Cape Town

    Google Scholar 

  55. Rodary D, Bonneau W, Le Maho Y, Bost C (2000) Benthic diving in male emperor penguins Aptenodytes forsteri foraging in winter. Mar Ecol Prog Ser 207:171–181

    Article  Google Scholar 

  56. Ropert-Coudert Y, Kato A, Baudat J, Bost C-A, Le Maho Y, Naito Y (2001) Feeding strategies of free-ranging Adélie penguins Pygoscelis adeliae analysed by multiple data recording. Polar Biol 24(6):460–466

    Article  Google Scholar 

  57. Ropert-Coudert Y, Kato A, Bost C-A, Rodary D, Sato K, Le Maho Y, Naito Y (2002) Do Adélie penguins modify their foraging behaviour in pursuit of different prey? Mar Biol 140(3):647–652

    Article  Google Scholar 

  58. Ropert-Coudert Y, Kato A, Wilson RP, Cannell B (2006) Foraging strategies and prey encounter rate of free-ranging Little Penguins. Mar Biol 149(2):139–148

    Article  Google Scholar 

  59. Ropert-Coudert Y, Sato K, Kato A, Charrassin J-B, Bost C-A, Maho YL, Naito Y (2000) Preliminary investigations of prey pursuit and capture by king penguins at sea. Polar Biosci 101

    Google Scholar 

  60. Ropert-Coudert Y, Kato A, Sato K, Naito Y, Baudat J, Bost A, Le Maho Y (2002) Swim speed of free-ranging Adélie penguins Pygoscelis adeliae and its relation to the maximum depth of dives. J Avian Biol 33(1):94–99

    Article  Google Scholar 

  61. Sato K, Naito Y, Kato A, Niizuma Y, Watanuki Y, Charrassin J, Bost C-A, Handrich Y, Le Maho Y (2002) Buoyancy and maximal diving depth in penguins: do they control inhaling air volume? J Exp Biol 205(9):1189–1197

    Article  PubMed  Google Scholar 

  62. Sato K, Shiomi K, Watanabe Y, Watanuki Y, Takahashi A, Ponganis PJ (2010) Scaling of swim speed and stroke frequency in geometrically similar penguins: they swim optimally to minimize cost of transport. Proc R Soc B Biol Sci 277(1682):707–714

    Article  Google Scholar 

  63. Sato K, Watanuki Y, Takahashi A, Miller PJ, Tanaka H, Kawabe R, Ponganis PJ, Handrich Y, Akamatsu T, Watanabe Y (2007) Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Proc R Soc B Biol Sci 274(1609):471–477

    Article  Google Scholar 

  64. Saunders RA, Fielding S, Thorpe SE, Tarling GA (2013) School characteristics of mesopelagic fish at South Georgia. Deep-Sea Res I Oceanogr Res Pap 81:62–77

    Article  Google Scholar 

  65. Schulz M (1987) Observations of feeding of a Little Penguin Eudyptula minor. Emu 87(3):186–187

    Article  Google Scholar 

  66. Siegfried W, Frost P, Kinahan J, Cooper J (1975) Social behaviour of Jackass Penguins at sea. Afr Zool 10(1):86–100

    Google Scholar 

  67. Simeone A, Wilson RP (2003) In-depth studies of Magellanic penguin (Spheniscus magellanicus) foraging: can we estimate prey consumption by perturbations in the dive profile? Mar Biol 143(4):825–831

    Article  Google Scholar 

  68. Sims DW, Southall EJ, Humphries NE, Hays GC, Bradshaw CJ, Pitchford JW, James A, Ahmed MZ, Brierley AS, Hindell MA (2008) Scaling laws of marine predator search behaviour. Nature 451(7182):1098–1102

    Article  CAS  PubMed  Google Scholar 

  69. Sivak J, Howland H, Mcgill-Harelstad P (1987) Vision of the Humboldt penguin (Spheniscus humboldti) in air and water. Proc R Soc Lond Ser B Biol Sci 229(1257):467–472

    CAS  Google Scholar 

  70. Sivak J, Millodot M (1977) Optical performance of the penguin eye in air and water. J Comp Physiol 119(3):241–247

    Article  Google Scholar 

  71. Skaret G, Johansen GO, Johnsen E, Fall J, Fiksen Ø, Englund G, Fauchald P, Gjøsæter H, Macaulay GJ, Johannesen E (2020) Diel vertical movements determine spatial interactions between cod, pelagic fish and krill on an Arctic shelf bank. Mar Ecol Prog Ser 638:13–23

    Article  Google Scholar 

  72. Steinfurth A, Vargas FH, Wilson RP, Spindler M, Macdonald DW (2008) Space use by foraging Galápagos penguins during chick rearing. Endanger Species Res 4(1–2):105–112

    Article  Google Scholar 

  73. Sutton G, Pichegru L, Botha JA, Kouzani AZ, Adams S, Bost CA, Arnould JP (2020) Multi-predator assemblages, dive type, bathymetry and sex influence foraging success and efficiency in African penguins. PeerJ 8:e9380

    Article  PubMed  PubMed Central  Google Scholar 

  74. Sutton GJ, Hoskins AJ, Arnould JP (2015) Benefits of group foraging depend on prey type in a small marine predator, the little penguin. PLoS One 10(12):e0144297

    Article  PubMed  PubMed Central  Google Scholar 

  75. Tabachnikov S (2009) Chases and escapes. The mathematics of pursuit and evasion by Paul J. Nahin. Math Intell 31(2):78–79

    Article  Google Scholar 

  76. Takahashi A, Dunn M, Trathan P, Croxall J, Wilson RP, Sato K, Naito Y (2004) Krill-feeding behaviour in a chinstrap penguin compared to fish-eating in Magellanic penguins: a pilot study. Mar Ornithol 32:47–54

    Google Scholar 

  77. Takahashi A, Sato K, Nishikawa J, Watanuki Y, Naito Y (2004) Synchronous diving behavior of Adélie penguins. J Ethol 22(1):5–11

    Article  Google Scholar 

  78. Tremblay Y, Cherel Y (1999) Synchronous underwater foraging behavior in penguins. Condor 101(1):179–185

    Article  Google Scholar 

  79. Tremblay Y, Cherel Y (2000) Benthic and pelagic dives: a new foraging behaviour in rockhopper penguins. Mar Ecol Prog Ser 204:257–267

    Article  Google Scholar 

  80. Vandenabeele S, Shepard E, Grémillet D, Butler P, Martin G, Wilson R (2015) Are bio-telemetric devices a drag? Effects of external tags on the diving behaviour of great cormorants. Mar Ecol Prog Ser 519:239–249

    Article  Google Scholar 

  81. Watanabe YY, Sato K, Watanuki Y, Takahashi A, Mitani Y, Amano M, Aoki K, Narazaki T, Iwata T, Minamikawa S (2011) Scaling of swim speed in breath-hold divers. J Anim Ecol 80(1):57–68

    Article  PubMed  Google Scholar 

  82. Watanabe YY, Takahashi A (2013) Linking animal-borne video to accelerometers reveals prey capture variability. Proc Natl Acad Sci 110(6):2199–2204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Webb P, Corolla R (1981) Burst swimming performance of northern anchovy, Engraulis mordax, larvae. Fish Bull 79:143–150

    Google Scholar 

  84. Wienecke B, Robertson G, Kirkwood R, Lawton K (2007) Extreme dives by free-ranging emperor penguins. Polar Biol 30(2):133–142

    Article  Google Scholar 

  85. Wilson JW, Mills MG, Wilson RP, Peters G, Mills ME, Speakman JR, Durant SM, Bennett NC, Marks NJ, Scantlebury M (2013) Cheetahs, Acinonyx jubatus, balance turn capacity with pace when chasing prey. Biol Lett 9(5):20130620

    Article  PubMed  PubMed Central  Google Scholar 

  86. Wilson R, Duffy D (1986) Prey seizing in African penguins Spheniscus-demersus: Nederlandse Ornithologische Unie C/O Paul Starmans. Oude Arnhemseweg 261:211–214

    Google Scholar 

  87. Wilson R, Steinfurth A, Ropert-Coudert Y, Kato A, Kurita M (2002) Lip-reading in remote subjects: an attempt to quantify and separate ingestion, breathing and vocalisation in free-living animals using penguins as a model. Mar Biol 140(1):17–27

    Article  Google Scholar 

  88. Wilson RP (1985) Seasonality in diet and breeding success of the jackass penguin Spheniscus demersus. J Ornithol 126(1):53–62

    Article  Google Scholar 

  89. Wilson RP, Griffiths IW, Mills MG, Carbone C, Wilson JW, Scantlebury DM (2015) Mass enhances speed but diminishes turn capacity in terrestrial pursuit predators. elife 4:e06487

    Article  PubMed  PubMed Central  Google Scholar 

  90. Wilson RP, Hustler K, Ryan PG, Burger AE, Noldeke EC (1992) Diving birds in cold water: do Archimedes and Boyle determine energetic costs? Am Nat 140(2):179–200

    Article  Google Scholar 

  91. Wilson RP, Puetz K, Bost CA, Culik BM, Bannasch R, Reins T, Adelung D (1993) Diel dive depth in penguins in relation to diel vertical migration of prey: whose dinner by candlelight? Mar Ecol Prog Ser 94:101–104

    Article  Google Scholar 

  92. Wilson RP, Ropert-Coudert Y, Kato A (2002) Rush and grab strategies in foraging marine endotherms: the case for haste in penguins. Anim Behav 63(1):85–95

    Article  Google Scholar 

  93. Wilson RP, Ryan PG, James A, Wilson M-PT (1987) Conspicuous coloration may enhance prey capture in some piscivores. Anim Behav 35:1558

    Article  Google Scholar 

  94. Wilson RP, White CR, Quintana F, Halsey LG, Liebsch N, Martin GR, Butler PJ (2006) Moving towards acceleration for estimates of activity-specific metabolic rate in free-living animals: the case of the cormorant. J Anim Ecol 75(5):1081–1090

    Article  PubMed  Google Scholar 

  95. Wilson RP, Wilson M-P T (1990) Foraging ecology of breeding Spheniscus penguins. Penguin Biol:181–206

    Google Scholar 

  96. Zasel’sliy V, Kudrin B, Poletayev V, Chechenin SC (1985) Some features of the biology of Electrona carlsbergi (Taning)(Myctophidae) in the Atlantic sector of the Antarctic. J Ichthyol 25(2):163–166

    Google Scholar 

  97. Zimmer I, Wilson RP, Beaulieu M, Ancel A, Plötz J (2008) Seeing the light: depth and time restrictions in the foraging capacity of emperor penguins at Pointe Géologie, Antarctica. Aquat Biol 3(3):217–226

    Article  Google Scholar 

  98. Zimmer I, Wilson RP, Beaulieu M, Ropert-Coudert Y, Kato A, Ancel A, Plötz J (2010) Dive efficiency versus depth in foraging emperor penguins. Aquat Biol 8(3):269–277

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David G Ainley .

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ainley, D.G., Wilson, R.P. (2023). The Final Seconds: How Fish-Birds Catch Prey. In: The Aquatic World of Penguins. Fascinating Life Sciences. Springer, Cham. https://doi.org/10.1007/978-3-031-33990-5_11

Download citation

Publish with us

Policies and ethics