Skip to main content

Diffraction Block in Extended nn-UNet for Brain Tumor Segmentation

  • Conference paper
  • First Online:
Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries (BrainLes 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13769))

Included in the following conference series:

Abstract

Automatic brain tumor segmentation based on 3D mpMRI is highly significant for brain diagnosis, monitoring, and treatment planning. Due to the limitation of manual delineation, automatic and accurate segmentation based on a deep learning network has a tremendous practical necessity. The BraTS2022 challenge provides many data to develop our network. In this work, we proposed a diffraction block based on the Fraunhofer single-slit diffraction principle, which emphasizes the effect of associated features and suppresses isolated features. We added the diffraction block to nn-UNet, which took first place in the BraTS 2020 competition. We also improved nn-UNet by referring to the solution proposed by the 2021 winner, including using a larger network and replacing the batch with a group normalization. In the final unseen test data, our method is ranked first for Pediatric population data and third for BraTS continuous evaluation data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rajput, S., Raval, M.S.: A review on end-to-end methods for brain tumor segmentation and overall survival prediction. arXiv preprint arXiv:2006.01632 (2020)

  2. Baid, U., et al.: The RSNA-ASNR-MICCAI BraTS 2021 Benchmark on Brain Tumor Segmentation and Radiogenomic Classification. arXiv:2107.02314 (2021)

  3. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., et al.: The multimodal brain tumor image segmentation benchmark (BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2015). https://doi.org/10.1109/TMI.2014.2377694

    Article  Google Scholar 

  4. Bakas, S., Akbari, H., Sotiras, A., Bilello, M., Rozycki, M., Kirby, J.S., et al.: Advancing the cancer genome atlas glioma MRI collections with expert segmentation labels and radiomic features. Nat. Sci. Data 4, 170117 (2017). https://doi.org/10.1038/sdata.2017.117

    Article  Google Scholar 

  5. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-GBM collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.KLXWJJ1Q

  6. Bakas, S., et al.: Segmentation labels and radiomic features for the pre-operative scans of the TCGA-LGG collection. The Cancer Imaging Archive (2017). https://doi.org/10.7937/K9/TCIA.2017.GJQ7R0EF

  7. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  8. Myronenko, A.: 3D MRI brain tumor segmentation using autoencoder regularization. In: Crimi, A., Bakas, S., Kuijf, H., Keyvan, F., Reyes, M., van Walsum, T. (eds.) BrainLes 2018. LNCS, vol. 11384, pp. 311–320. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11726-9_28

    Chapter  Google Scholar 

  9. Jiang, Z., Ding, C., Liu, M., Tao, D.: Two-stage cascaded U-Net: 1st place solution to BraTS challenge 2019 segmentation task. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019. LNCS, vol. 11992, pp. 231–241. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_22

    Chapter  Google Scholar 

  10. Isensee, F., Jäger, P.F., Full, P.M., Vollmuth, P., Maier-Hein, K.H.: nnU-net for brain tumor segmentation. In: Crimi, A., Bakas, S. (eds.) BrainLes 2020. LNCS, vol. 12659, pp. 118–132. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72087-2_11

    Chapter  Google Scholar 

  11. Isensee, F., Jaeger, P.F., Kohl, S.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods 18(2), 203–211 (2021)

    Article  Google Scholar 

  12. Luu, H.M., Park, S.H.: Extending nn-UNet for brain tumor segmentation. arXiv preprint arXiv:2112.04653 (2021)

  13. Maji, D., Sigedar, P., Singh, M.: Attention res-UNet with guided decoder for semantic segmentation of brain tumors. Biomed. Signal Process. Control 71, 103077 (2022)

    Article  Google Scholar 

  14. Sun, J., Peng, Y., Guo, Y., Li, D.: Segmentation of the multimodal brain tumor image used the multi-pathway architecture method based on 3D FCN. Neurocomputing 423, 34–45 (2021)

    Article  Google Scholar 

  15. Wang, P., Chung, A.C.: Relax and focus on brain tumor segmentation. Med. Image Anal. 75, 102259 (2022)

    Article  Google Scholar 

  16. Maas, A.L., Hannun, A.Y., Andrew, Y.N.: Rectifier nonlinearities improve neural network acoustic models. Proc. ICML 30(1), 3 (2013)

    Google Scholar 

  17. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Instance normalization: the missing ingredient for fast stylization. arXiv preprint arXiv:1607.08022 (2016)

  18. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volumetric medical image segmentation. In: International Conference on 3D Vision (3DV), pp. 565–571. IEEE (2016)

    Google Scholar 

  19. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. Carneiro, G., et al. (eds.) Deep Learning and Data Labeling for Medical Applications, vol. 10008, pp. 179–187. Springer International Publishing Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

  20. Wu, Y., He, K.: Group normalization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11217, pp. 3–19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01261-8_1

    Chapter  Google Scholar 

Download references

Acknowledgements

We want to acknowledge Fabian Isensee for developing the nn-UNet framework and sharing the models from the 2020 competition and Huan Minh Luu for modifying the nn-UNet and communicating the models from last year’s competition.

This paper is the results of the research project funded by the National Natural Science Foundation of China (61976126) and Shandong Natural Science Foundation (ZR2019MF003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanjun Peng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hou, Q., Wang, Z., Wang, J., Jiang, J., Peng, Y. (2023). Diffraction Block in Extended nn-UNet for Brain Tumor Segmentation. In: Bakas, S., et al. Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries. BrainLes 2022. Lecture Notes in Computer Science, vol 13769. Springer, Cham. https://doi.org/10.1007/978-3-031-33842-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33842-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33841-0

  • Online ISBN: 978-3-031-33842-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics