Skip to main content

Investigation on Utilizing of Steel Slag as a Partial Replacement of Natural River Sand as a Fine Aggregate in Concrete Production

  • Chapter
  • First Online:
Advancement of Science and Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 176 Accesses

Abstract

This chapter presents a study aimed at investigating the utilization of steel slag as a partial replacement of natural river sand as a fine aggregate in concrete production. It is difficult to produce iron in a blast furnace without first producing steel by-products, i.e., steel slag. The use of steel slag aggregates in concrete by replacing natural aggregates is encouraging because their effect on concrete strength is greater than that of natural river sand. For this study, a normal strength (C-25) of concrete with 0%, 15%, 30%, 45%, and 60% replacement of steel slag was utilized for 3 days, 7 days, 28 days, and 56 days of curing age. The material properties were carried out experimentally according to ASTM standards on the fresh, mechanical, and durability properties of concrete: workability, compressive strength, sulfate attack resistance, water absorption, and ultrasonic pulse velocity (UPV) tests were conducted. Based on the initial fundamental test carried out on the fresh properties of concrete in terms of workability, the test obtained the results needed with a slump of 25–50 mm. The compressive strength test results obtained by partial replacement of up to 30% were greater than those of the control mix. Durability tests on both sands, such as sulfate attack resistance, water absorption, and ultrasonic pulse velocity tests, showed that slag sand output was nearly equal to or better than natural river sand by up to 30%.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hou, J., Liu, Q., Liu, J., & Wu, Q. (2018). Material properties of steel slag-cement binding materials prepared by precarbonated steel slag. Journal of Materials in Civil Engineering, 30(9). https://doi.org/10.1061/(asce)mt.1943-5533.0002370

  2. Ramesh, S. T., Gandhimathi, R., Nidheesh, V., Rajakumar, S., & Prateepkumar, S. (2013). Use of furnace slag and welding slag as replacement for sand in concrete. [Online]. Available: http://www.journal-ijeee.com/content/4/1/3

  3. Gupta, T., & Sachdeva, S. N. (2019). Laboratory investigation and modeling of concrete pavements containing AOD steel slag. Cement and Concrete Research, 124. https://doi.org/10.1016/j.cemconres.2019.105808

  4. Miah, M. J., Ali, M. K., Li, Y., Babafemi, A. J., & Paul, S. C. (2021). Impact of induction furnace steel slag as replacement for fired clay brick aggregate on flexural and durability performances of RC beams. Materials (Basel), 14(21). https://doi.org/10.3390/ma14216268

  5. U.S. Geological Survey. Mineral commodity summaries 2022 – Cement.

    Google Scholar 

  6. Sand and sustainability: Finding new solutions for environmental governance of global sand resources. (2019). [Online]. Available: http://www.unepgrid.ch/

  7. Sreebha, S., & Padmalal, D. (2011). Environmental impact assessment of sand mining from the small catchment rivers in the Southwestern Coast of India: A case study. Environmental Management, 47(1), 130–140. https://doi.org/10.1007/s00267-010-9571-6

    Article  Google Scholar 

  8. Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities [Online]. Available: www.nature.com

  9. Dan Gavriletea, M. (2017). Environmental impacts of sand exploitation. Analysis of sand market. Sustainability (Switzerland), 9(7). MDPI. https://doi.org/10.3390/su9071118.

  10. Saravanan, J., & Suganya, N. (2015). Mechanical properties of concrete using steel slag aggregate [Online]. Available: www.ijeijournal.com

  11. Sawant, A. B., Kolekar, S. M., & Sawant, A. A. (2019). Utilization of blast furnace slag in concrete.

    Google Scholar 

  12. Vasanthi, P., & Professor A. Flexural behaviour of reinforced concrete slabs using steel slag as coarse aggregate replacement [Online]. Available: http://www.ijret.org

  13. Dash, M. K., Patro, S. K., & Rath, A. K. (2016). Sustainable use of industrial-waste as partial replacement of fine aggregate for preparation of concrete – A review. International Journal of Sustainable Built Environment, 5(2), 484–516. https://doi.org/10.1016/j.ijsbe.2016.04.006. Elsevier B.V.

    Article  Google Scholar 

  14. Charan, M. R., Sunil, S., Reddy, P., & Viqar, S. (2017). Experimental behavior of steel slag in concrete [Online]. Available: www.ijcseonline.org

  15. Chukwudi, B. C., & Okorie, B. A. (2014). Evaluation of the physical and mechanical properties of ceramic tiles processed using steel slag. Advanced Materials Research, 856, 257–261. https://doi.org/10.4028/www.scientific.net/AMR.856.257

    Article  Google Scholar 

  16. Liu, S., Wang, Z., & Li, X. (2014). Long-term properties of concrete containing ground granulated blast furnace slag and steel slag. Magazine of Concrete Research, 66(21), 1095–1103. https://doi.org/10.1680/macr.14.00074

    Article  Google Scholar 

  17. Jayaprakash, S., Dhanapal, J., Deivasigamani, V., & Elias, G. (2021). Flexural behaviour of chicken mesh ferrocement laminates with partial replacement of fine aggregate by steel slag. Advances in Materials Science and Engineering, 2021. https://doi.org/10.1155/2021/7307493

  18. Kusumawardani, D. M., & Lin, J. D. (2014). Evaluations of performance and thermal properties in porous asphalt concrete containing steel slag. Advanced Materials Research, 1025–1026, 688–692. https://doi.org/10.4028/www.scientific.net/AMR.1025-1026.688

    Article  Google Scholar 

  19. Liu, J., & Wang, D. (2017). Application of ground granulate blast furnace slag-steel slag composite binder in a massive concrete structure under severe sulphate attack. Advances in Materials Science and Engineering, 2017. https://doi.org/10.1155/2017/9493043

  20. Guo, J., Bao, Y., & Wang, M. (2018). Steel slag in China: Treatment, recycling, and management. Waste Management, 78, 318–330. https://doi.org/10.1016/j.wasman.2018.04.045. Elsevier Ltd.

    Article  Google Scholar 

  21. IEEE Staff. (2018). 2018 4th international conference on green technology and sustainable development (GTSD). IEEE.

    Google Scholar 

  22. Han, F., & Wu, L. (2019). Comprehensive utilization technology of steel slag. In Industrial solid waste recycling in Western China (pp. 305–356). Springer Singapore. https://doi.org/10.1007/978-981-13-8086-0_6

    Chapter  Google Scholar 

  23. Kasaf, M., & Prastyanto, C. A. (2020). Analysis the use of steel slag as a replacement of natural aggregate in the asphalt concrete binder course (AC-BC) mixture. IOP Conference Series: Materials Science and Engineering, 930(1). https://doi.org/10.1088/1757-899X/930/1/012064

  24. Adiwijaya, I., Datu, T., & Khairil. (2021). Applicability of steel slag as replacement aggregate on characteristic of self-compacting concrete. IOP Conference Series: Earth and Environmental Science, 871(1). https://doi.org/10.1088/1755-1315/871/1/012017

  25. Sharma, A. T. C. R. (2015). Study of characteristic strength of M30 grade of concrete by partial replacement of sand with steel slag. International Journal of Innovative Research in Science, Engineering and Technology, 4(8), 6868–6874. https://doi.org/10.15680/ijirset.2015.0408023

    Article  Google Scholar 

  26. Heniegal, A. M., Amin, M., & Youssef, H. (2017). Effect of silica fume and steel slag coarse aggregate on the corrosion resistance of steel bars. Construction and Building Materials, 155, 846–851. https://doi.org/10.1016/j.conbuildmat.2017.08.111

    Article  Google Scholar 

  27. Yong Tiong, H., Kang Lim, S., & Hock Lim, J. (2017). Strength properties of foamed concrete containing crushed steel slag as partial replacement of sand with specific gradation. MATEC Web of Conferences, 103, 01012.

    Article  Google Scholar 

  28. Arjun, S., Hemalatha, T., & Rajasekaran, C. (2019). Partial replacement of steel slag aggregates in concrete as fine aggregates (induction blast furnace slag). In Lecture notes in civil engineering (Vol. 25, pp. 771–780). Springer. https://doi.org/10.1007/978-981-13-3317-0_69

    Chapter  Google Scholar 

  29. Subathra Devi, V. (2018). Self-healing properties of steel slag bio concrete. In International conference for phoenixes on emerging current trends in engineering and management (PECTEAM 2018). Atlantis Press.

    Google Scholar 

  30. Jena, S., & Panigrahi, R. (2019). Performance assessment of geopolymer concrete with partial replacement of ferrochrome slag as coarse aggregate. Construction and Building Materials, 220, 525–537. https://doi.org/10.1016/j.conbuildmat.2019.06.045

    Article  Google Scholar 

  31. Suganya, N. (2019). Geopolymer concrete using scrap steel slag as coarse aggregate. International Journal for Research in Applied Science and Engineering Technology, 7(1), 781–785. https://doi.org/10.22214/ijraset.2019.1122

    Article  Google Scholar 

  32. Ali, I., & Ahmad, E. An experimental investigation on partial replacement of cement with rice husk ash and fine aggregate with steel slag [Online]. Available: www.ijert.org

  33. Arumugam, V., Muthukumaran, N., & Ellappan, P. (2020). CFST Compression members with steel slag as a partial replacement for fine aggregate. IOP Conference Series: Materials Science and Engineering, 955(1). https://doi.org/10.1088/1757-899X/955/1/012059.

  34. Tangadagi, R. B., & Professor, A. Experimental investigation on use of steel slag as a partial replacement of fine aggregate in concrete. https://doi.org/10.37896/jxu14.5/78.

  35. Warudkar, A. A., & Nigade, M. (2015). Technical assessment on performance of partial replacement of coarse aggregate by steel slag in concrete. International Journal of Engineering Trends and Technology (IJETT), 30, [Online]. Available: http://www.ijettjournal.org

  36. Akinwumi, I. I., Adeyeri, J. B., & Ejohwomu, O. A. (2013). Effects of steel slag addition on the plasticity, strength and permeability of lateritic soil. American Society of Civil Engineering Journal, 54, 270–295.

    Google Scholar 

  37. Krishnasami, R., & Malathy, R. (2014). Optimization of replacement level of steel slag as coarse aggregate in self compacting concrete. Asian Journal of Chemistry, 26, S283–S286. https://doi.org/10.14233/ajchem.2014.19066

    Article  Google Scholar 

  38. Maruthachalam, V., & Palanisamy, M. (2014). High performance concrete with steel slag aggregate. Gradjevinar, 66(7), 605–612. https://doi.org/10.14256/JCE.1052.2014

    Article  Google Scholar 

  39. Adegoloye, G., Beaucour, A. L., Ortola, S., & Noumowé, A. (2015). Concretes made of EAF slag and AOD slag aggregates from stainless steel process: Mechanical properties and durability. Construction and Building Materials, 76, 313–321. https://doi.org/10.1016/j.conbuildmat.2014.12.007

    Article  Google Scholar 

  40. Warudkar, A., & Elavenil, S. (2022). Strength and durability properties of waste steel slag mixed concrete. Engineering Review, 42(1). https://doi.org/10.30765/er.1628

  41. Chen, M., Zhou, M., & Wu, S. (2007). Optimization of blended mortars using steel slag sand. Journal Wuhan University of Technology, Materials Science Edition, 22(4), 741–744. https://doi.org/10.1007/s11595-006-4741-3

    Article  Google Scholar 

  42. Li, Y. (2010). Sustainable manufacturing technology and properties of steel slag concrete. Advanced Materials Research, 97–101, 901–904. https://doi.org/10.4028/www.scientific.net/AMR.97-101.901

    Article  Google Scholar 

  43. Li, Y., Wang, L., & Guo, H. (2010). Environment-friendly concrete and cement mortar mixed with steel slag. In Earth and space 2010 engineering, science, construction, and operations in challenging environments. American Society of Civil Engineers. https://doi.org/10.1061/41096(366)49

    Chapter  Google Scholar 

  44. Lun, Y., Zhou, M., & Cai, X. (2009). Improving effect of mineral admixtures on volume stability of steel slag mortar. Materials Science Forum, 620–622, 619–622. https://doi.org/10.4028/www.scientific.net/MSF.620-622.619

    Article  Google Scholar 

  45. Li, Y. F. (2011). Microstructure and properties of high performance concrete with steel slag powder. Materials Science Forum, 675–677, 503–506. https://doi.org/10.4028/www.scientific.net/MSF.675-677.503

    Article  Google Scholar 

  46. Li, Y., Kong, F., & Du, R. (2009). Application of high performance concrete mixed with steel slag powder in concrete pavements. In ICCTP 2009 critical issues in transportation systems planning, development, and management. American Society of Civil Engineers.

    Google Scholar 

  47. Lun, Y., Liu, S., Zhou, M., & Liu, X. (2011). Stress-chemistry mechanism of mortars made with steel slag sand. Advanced Materials Research, 163–167, 899–903. https://doi.org/10.4028/www.scientific.net/AMR.163-167.899

    Article  Google Scholar 

  48. Di Liu, Q., Sun, J. Y., & Han, Y. (2011). Research on performance of steel slag and porous cement concrete made by steel slag aggregate. Advanced Materials Research, 214, 306–311. https://doi.org/10.4028/www.scientific.net/AMR.214.306

    Article  Google Scholar 

  49. Netinger, I., Bjegović, D., & Vrhovac, G. (2011). Utilisation of steel slag as an aggregate in concrete. Materials and Structures, 44(9), 1565–1575. https://doi.org/10.1617/s11527-011-9719-8

    Article  Google Scholar 

  50. Li, W., Sun, P., & Zhang, C. (2012). Laboratory test study on asphalt concrete with steel slag aggregates. Applied Mechanics and Materials, 152–154, 117–120. https://doi.org/10.4028/www.scientific.net/AMM.152-154.117

    Article  Google Scholar 

  51. Netinger, I., Rukavina, M. J., & Mladenovič, A. (2013). Improvement of post-fire properties of concrete with steel slag aggregate. Procedia Engineering, 62, 745–753. https://doi.org/10.1016/j.proeng.2013.08.121

    Article  Google Scholar 

  52. Barišić, I., Dimter, S., & Rukavina, T. (2014). Strength properties of steel slag stabilized mixes. Composites. Part B, Engineering, 58, 386–391. https://doi.org/10.1016/j.compositesb.2013.11.002

    Article  Google Scholar 

  53. Yildirim, I. Z., Asce, M., Prezzi, M., & Asce, A. M. (2015). Steel slag: Chemistry, mineralogy, and morphology. Geotechnical Special Publications, 256, 2816–2825.

    Google Scholar 

  54. Magadi, K. L., Anirudh, N., & Mallesh, K. M. (2016). Evaluation of bituminous concrete mixture properties with steel slag. Transportation Research Procedia, 17, 174–183. https://doi.org/10.1016/j.trpro.2016.11.073

    Article  Google Scholar 

  55. Biskri, Y., Achoura, D., Chelghoum, N., & Mouret, M. (2017). Mechanical and durability characteristics of high performance concrete containing steel slag and crystalized slag as aggregates. Construction and Building Materials, 150, 167–178. https://doi.org/10.1016/j.conbuildmat.2017.05.083

    Article  Google Scholar 

  56. Hu, J. (2017). Comparison between the effects of superfine steel slag and superfine phosphorus slag on the long-term performances and durability of concrete. Journal of Thermal Analysis and Calorimetry, 128(3), 1251–1263. https://doi.org/10.1007/s10973-017-6107-9

    Article  Google Scholar 

  57. Dinh, B. H., Park, D. W., & Phan, T. M. (2018). Healing performance of granite and steel slag asphalt mixtures modified with steel wool fibers. KSCE Journal of Civil Engineering, 22(6), 2064–2072. https://doi.org/10.1007/s12205-018-1660-8

    Article  Google Scholar 

  58. Du, P., Zhou, T., Zhao, P., Zhou, Z., Liu, Y., & Cheng, X. (2018). Efflorescence inhibition of alkali-activated steel slag-slag material by nano SiO2. Ceramics-Silikáty, 62(3), 285–292. https://doi.org/10.13168/cs.2018.0023

    Article  Google Scholar 

  59. Fathy, S., Liping, G., Ma, R., Chunping, G., & Wei, S. (2018). Comparison of hydration properties of cement-carbon steel slag and cement-stainless steel slag blended binder. Advances in Materials Science and Engineering, 2018. https://doi.org/10.1155/2018/1851367

  60. He, M., Li, B., Zhou, W., Chen, H., Liu, M., & Zou, L. (2018). Preparation and characteristics of steel slag ceramics from converter slag. Minerals, Metals and Materials Series, Part F8, 13–20. https://doi.org/10.1007/978-3-319-72484-3_2

    Article  Google Scholar 

  61. Liu, J., & Guo, R. (2018). Applications of steel slag powder and steel slag aggregate in ultra-high performance concrete. Advances in Civil Engineering, 2018. https://doi.org/10.1155/2018/1426037

  62. Bing, L., Biao, T., Zhen, M., Hanchi, C., & Hongbo, L. (2019). Physical and chemical properties of steel slag and utilization technology of steel slag at home and abroad. IOP Conference Series: Earth and Environmental Science, 242(3). https://doi.org/10.1088/1755-1315/242/3/032012

  63. Jalil, A., Khitab, A., Ishtiaq, H., Bukhari, S. H., Arshad, M. T., & Anwar, W. (2019). Evaluation of steel industrial slag as partial replacement of cement in concrete. Civil Engineering Journal, 5(1), 181. https://doi.org/10.28991/cej-2019-03091236

    Article  Google Scholar 

  64. Liu, J., Yi, C., Zhu, H., & Ma, H. (2019). Property comparison of alkali-activated carbon steel slag (CSS) and stainless steel slag (SSS) and role of blast furnace slag (BFS) chemical composition. Materials (Basel), 12(20). https://doi.org/10.3390/ma12203307

  65. Liu, W., Li, H., Zhu, H., & Xu, P. (2019). Properties of a steel slag-permeable asphalt mixture and the reaction of the steel slag-asphalt interface. Materials (Basel), 12(21). https://doi.org/10.3390/ma12213603

  66. Yan, Z., & Hao, Z. (2019). Study on preparation and performance of steel slag asphalt mixture based on steel slag aggregate. IOP Conference Series: Materials Science and Engineering, 631(2). https://doi.org/10.1088/1757-899X/631/2/022067

  67. Czop, M., & Lazniewska-Piekarczyk, B. (2020). Use of slag from the combustion of solid municipal waste as a partial replacement of cement in mortar and concrete. Materials (Basel), 13(7). https://doi.org/10.3390/ma13071593

  68. Liu, W., Li, H., Zhu, H., & Xu, P. (2020). Effects of steel-slag components on interfacial-reaction characteristics of permeable steel-slag-bitumen mixture. Materials (Basel), 13(17). https://doi.org/10.3390/ma13173885

  69. Liu, G., Schollbach, K., van der Laan, S., Tang, P., Florea, M. V. A., & Brouwers, H. J. H. (2020). Recycling and utilization of high volume converter steel slag into CO2 activated mortars – The role of slag particle size. Resources, Conservation and Recycling, 160. https://doi.org/10.1016/j.resconrec.2020.104883

  70. Nedeljković, A., et al. (2020). Waste slag from heating plants as a partial replacement for cement in mortar and concrete production. Part I—Physical–chemical and physical–mechanical characterization of slag. Minerals, 10(11), 1–15. https://doi.org/10.3390/min10110992

    Article  MathSciNet  Google Scholar 

  71. Aghajanian, A., Thomas, C., & Behfarnia, K. (2021). Effect of micro-silica addition into electric arc furnace steel slag eco-efficient concrete. Applied Sciences, 11(11). https://doi.org/10.3390/app11114893

  72. Amancio, F. A., Dias, A. R. O., Lima, D. A., Cabral, A. E. B., & Mesquita, E. F. T. (2021). Evaluation of mortars produced with Baosteel slag short flow (BSSF) steel slag as fine aggregate. Cerâmica, 67(381), 48–57. https://doi.org/10.1590/0366-69132021673812977

    Article  Google Scholar 

  73. El-Hassan, H., Medljy, J., & El-Maaddawy, T. (2021). Properties of steel fiber-reinforced alkali-activated slag concrete made with recycled concrete aggregates and dune sand. Sustainability, 13(14). https://doi.org/10.3390/su13148017

  74. Hussain, I., Ali, B., Rashid, M. U., Amir, M. T., Riaz, S., & Ali, A. (2021). Engineering properties of factory manufactured paving blocks utilizing steel slag as cement replacement. Case Studies in Construction Materials, 15. https://doi.org/10.1016/j.cscm.2021.e00755

  75. Kansal, C. M., & Goyal, R. (2021). Effect of nano silica, silica fume and steel slag on concrete properties. Materials Today: Proceedings, 45, 4535–4540. https://doi.org/10.1016/j.matpr.2020.12.1162

    Article  Google Scholar 

  76. Li, X., Li, K., Sun, Q., Liu, L., Yang, J., & Xue, H. (2021). Preparation of cemented oil shale residue–steel slag–ground granulated blast furnace slag backfill and its environmental impact. Materials (Basel), 14(8). https://doi.org/10.3390/ma14082052

  77. Liu, Z., & Huang, Z. (2021). Influence of steel slag-superfine blast furnace slag composite mineral admixture on the properties of mortar and concrete. Advances in Civil Engineering, 2021. https://doi.org/10.1155/2021/9983019

  78. Liu, Z., et al. (2021). The mechanism of hydration reaction of granulated blast furnace slag-steel slag-refining slag-desulfurization gypsum-based clinker-free cementitious materials. Journal of Building Engineering, 44. https://doi.org/10.1016/j.jobe.2021.103289

  79. Zhou, M., Cheng, X., & Chen, X. (2021). Studies on the volumetric stability and mechanical properties of cement-fly-ash-stabilized steel slag. Materials (Basel), 14(3), 1–16. https://doi.org/10.3390/ma14030495

    Article  Google Scholar 

  80. Aponte, D., Martín, O. S., Del Barrio, S. V., & Bizinotto, M. B. (2020). Ladle steel slag in activated systems for construction use. Minerals, 10(8), 1–12. https://doi.org/10.3390/min10080687

    Article  Google Scholar 

  81. Zhang, S. P., & Zong, L. (2014). Evaluation of relationship between water absorption and durability of concrete materials. Advances in Materials Science and Engineering, 2014. https://doi.org/10.1155/2014/650373

  82. Olonade, K., Kadiri, M., & Aderemi, P. (2015). Performance of steel slag as fine aggregate in structural concrete. Nigerian Journal of Technology, 34(3), 452. https://doi.org/10.4314/njt.v34i3.4

    Article  Google Scholar 

  83. Desai, G., Lohakare, P., Bhavsar, A., Ugale, A., & Bhavsar, N. (2018). Partial replacement of fine aggregate using steel slag 1, 6(2) [Online]. Available: www.ijedr.org

  84. Qasrawi, H., Shalabi, F., & Asi, I. (2009). Use of low cao unprocessed steel slag in concrete as fine aggregate. Construction and Building Materials, 23, 1118.

    Article  Google Scholar 

  85. Subathra Devi, V., & Gnanavel, B. K. (2014). Properties of concrete manufactured using steel slag. Procedia Engineering, 97, 95–104. https://doi.org/10.1016/j.proeng.2014.12.229

    Article  Google Scholar 

  86. Bhausaheb, Autade, P., & Singh Jaswinder Singh Saluja, H. (2016). Effect of steel slag as a replacement of fine aggregate in M40 grade of concrete. International Journal of New Innovations in Engineering and Technology, 5(4), 2319–6319.

    Google Scholar 

  87. Patra, R. K., & Mukharjee, B. B. (2017). Properties of concrete incorporating granulated blast furnace slag as fine aggregate. Advances in Concrete Construction, 5(5), 437–450. https://doi.org/10.12989/acc.2017.5.5.437

    Article  Google Scholar 

  88. Siddhartha, K. K., Bhuvaneshwari, P., & Saravana Raja Mohan, K. (2018). Strength characteristics of GGBS and steel slag based binary mix concrete. International Journal of Engineering & Technology, 7(3), 348–350. https://doi.org/10.1520/C0150_C0150M-12

    Article  Google Scholar 

  89. Bawa, S., Kumar, B., & Basheer, A. (2018). Effect of steel slag as partial replacement of fine aggregate on mechanical properties of concrete engineered bamboo for structural application view project effect of steel slag as partial replacement of fine aggregate on mechanical properties of concrete [Online]. Available: https://www.researchgate.net/publication/330754204

  90. Bharani, S., Rameshkumar, G., Manikandan, J., Balayogi, T., Gokul, M., & Bhuvanesh, D. C. (2020). Experimental investigation on partial replacement of steel slag and E-waste as fine and coarse aggregate. Materials Today: Proceedings, 37(Part 2), 3534–3537. https://doi.org/10.1016/j.matpr.2020.09.419

    Article  Google Scholar 

  91. Shelorkar, A. P., & Jadhao, P. D. (2019). Effects of steel slag on durability properties of slurry infiltrated fibrous concrete. International Journal of Engineering and Advanced Technology, 8(6), 143–148. https://doi.org/10.35940/ijeat.D6501.088619

    Article  Google Scholar 

  92. Damena, M., & Vadivu, S. (2020). Eco concrete characterization using steel slag and ground granulated blast furnace slag as partial replacement of sand and cement respectively. Landscape Architecture and Regional Planning, 5(4), 61. https://doi.org/10.11648/j.larp.20200504.11

    Article  Google Scholar 

  93. Ducman, V., & Mladenovič, A. (2011). The potential use of steel slag in refractory concrete. Materials Characterization, 62(7), 716–723. https://doi.org/10.1016/j.matchar.2011.04.016

    Article  Google Scholar 

  94. Dilli Bai, K., Krishna Rao, A., & Sounthararajan, V. M. (2019). Strength characteristics of slag based steel fiber reinforced concrete with partial replacement of steel slag in coarse aggregate. International Journal of Recent Technology and Engineering, 8(3), 3449–3452. https://doi.org/10.35940/ijrte.C5073.098319

    Article  Google Scholar 

  95. Shariq, M., Prasad, J., & Masood, A. (2013). Studies in ultrasonic pulse velocity of concrete containing GGBFS. Construction and Building Materials, 40, 944–950. https://doi.org/10.1016/j.conbuildmat.2012.11.070

    Article  Google Scholar 

Download references

Acknowledgments

This chapter was submitted to International Conference on Advancement of Science and Technology (ICAST 2021) and it has got acceptance. However, the authors cannot pay registration fee by the time and it could be published on the conference proceeding. Hence, the authors greatly express their acknowledgment to ICAST 2021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitiku Damtie Yehualaw .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yehualaw, M.D., Fantahun, D., Endale, S.A., Getahun, S., Vo, DH. (2023). Investigation on Utilizing of Steel Slag as a Partial Replacement of Natural River Sand as a Fine Aggregate in Concrete Production. In: Woldegiorgis, B.H., Mequanint, K., Getie, M.Z., Mulat, E.G., Alemayehu Assegie, A. (eds) Advancement of Science and Technology . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-33610-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33610-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33609-6

  • Online ISBN: 978-3-031-33610-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics