Skip to main content

Experimental Investigation of Parabolic Solar Dish Concentrator-Based Solar Dryer Assisted with Thermal Energy Storage System

  • Chapter
  • First Online:
Advancement of Science and Technology

Part of the book series: Green Energy and Technology ((GREEN))

  • 170 Accesses

Abstract

Post-harvest losses are a major problem, especially in developing nations. Drying crops with solar energy have a huge economic impact all over the world in terms of reducing post-harvest losses. Experiments with different drying models have been conducted on an indirect active solar dryer using a parabolic dish solar concentrator and rock-bed thermal storage material. Mango slices were dried using solar energy to explore drying performance parameters such as drying rate, quality of dried mango in terms of color, taste, rehydration ratio, and shrinkage ratio. The moisture content was reduced from 82% to 15%. Mango slices dried at 1 m/s air flow rate were of the best quality in terms of color, taste, and shape when compared to those dried at 0.5 and 2 m/s air flow rates in the drying chamber. The average collector thermal and drying efficiency with thermal storage was 65.5% and 16.5%, respectively, based on the test findings. The Page model was determined to be the best fit for mango slice drying among the thin layer drying models studied using criteria of high coefficient of determination (R2) close to unity and lower value of mean bias error, root mean square error, and chi-square value closed to zero.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A a :

Aperture area

CO:

Carbon mono oxide

C p :

Specific heat capacity

D R :

Drying rate

eff:

Effective

f :

Focal length

He:

Heat exchanger

HTF:

Heat transfer fluid

I b :

Beam solar radiation

ISD:

Indirect solar dryer

I t :

Total solar radiation

L :

Latent heat of vaporization

Mcdb:

Moisture content dry basis

MCwb:

Moisture content, wet basis

M e :

Equilibrium moisture content

M f :

Final moisture content

M i :

Initial moisture contents

M m :

Moisture content at half time

MRexp,i:

Experimental moisture ratios

MRpre,i:

Predicted moisture ratios

MSD:

Mixed solar dryer

m t :

Moisture content at a time

n :

Number of constant

N :

Number of observations

Q m :

Amount of heat

Re:

Receiver

RHS:

Rectangular high carbon steel

TES:

Thermal energy storage

T pr :

Product temperature

V :

Volume

W d :

Weight of dry matter

W f :

Final sample weight

W i :

Initial sample weight

W p :

Weight of the product

W w :

Weight of water

W wr :

Weight of water removed

η :

Efficiency

η d :

Drying efficiency

ε :

Void fraction

ψ rim :

Parabolic rim angle

References

  1. Bhardwaj, A. K., Chauhan, R., Kumar, R., Sethi, M., & Rana, A. (2017). Experimental investigation of an indirect solar dryer integrated with phase change material for drying valeriana jatamansi (medicinal herb). Case Studies in Thermal Engineering, 10, 302–314.

    Article  Google Scholar 

  2. Bhasme, S. (2016). Comparative evaluation of parabolic collector and scheffler reflector for solar cooking. International Journal of Engineering Research and Technology, 9, 1–16.

    Google Scholar 

  3. Chauhan, Y. B., & Rathod, P. P. (2020). A comprehensive review of the solar dryer. International Journal of Ambient Energy, 41(3), 348–367.

    Article  Google Scholar 

  4. Dissa, A. O., Bathiebo, J., Kam, S., Savadogo, P. W., Desmorieux, H., & Koulidiati, J. (2009). Modelling and experimental validation of thin layer indirect solar drying of mango slices. Renewable Energy, 34(4), 1000–1008. https://doi.org/10.1016/j.renene.2008.08.006

  5. Djebli, A., Hanini, S., Badaoui, O., Haddad, B., & Benhamou, A. (2020). Modeling and comparative analysis of solar drying behavior of potatoes. Renewable Energy, 145, 1494–1506.

    Article  Google Scholar 

  6. Dwivedi, V. (2009). Thermal modelling and control of domestic hot water tank [Thesis]. Master of Science in Energy Systems and the Environment.

    Google Scholar 

  7. Fortes, M., Okos, M. R., & Barrett, J. R., Jr. (1981). Heat and mass transfer analysis of intra-kernel wheat drying and rewetting. Journal of Agricultural Engineering Research, 26(2), 109–125. https://doi.org/10.1016/0021-8634(81)90063-9

  8. Fudholi, A., Sopian, K., Bakhtyar, B., Gabbasa, M., Othman, M. Y., & Ruslan, M. H. (2015). Review of solar drying systems with air based solar collectors in Malaysia. Renewable and Sustainable Energy Reviews, 51, 1191–1204.

    Article  Google Scholar 

  9. Hao, W., Liu, S., Mi, B., & Lai, Y. (2020). Mathematical modeling and performance analysis of a new hybrid solar dryer of lemon slices for controlling drying temperature. Energies, 13(2), 350.

    Article  Google Scholar 

  10. Hossain, M. Z., Hossain, M. A., Awal, M. A., Alam, M. M., & Rabbani, A. H. M. M. (2015). Design and development of solar dryer for chilli drying. International Journal of Research, 2(1), 63–78.

    Google Scholar 

  11. Jain, D., & Tewari, P. (2015). Performance of indirect through pass natural convective solar crop dryer with phase change thermal energy storage. Renewable Energy, 80, 244–250.

    Article  Google Scholar 

  12. Kamarulzaman, A., Hasanuzzaman, M., & Rahim, N. A. (2021). Global advancement of solar drying technologies and its future prospects: A review. Solar Energy, 221, 559–582.

    Article  Google Scholar 

  13. Kaur, R., Kumar, M., Gupta, O. P., & Kumar, S. (2017). Drying characteristics of mango and development of computer simulated model. Agricultural Research Journal, 54(1), 76.

    Article  Google Scholar 

  14. Kumar, M., Sansaniwal, S. K., & Khatak, P. (2016). Progress in solar dryers for drying various commodities. Renewable and Sustainable Energy Reviews, 55, 346–360.

    Article  Google Scholar 

  15. López-Vidaña, E. C., Méndez-Lagunas, L. L., & Rodríguez-Ramírez, J. (2013). Efficiency of a hybrid solar-gas dryer. Solar Energy, 93, 23–31.

    Article  Google Scholar 

  16. Mohammed, K., & Afework, B. (2018). Post-harvest loss and quality deterioration of horticultural crops in Dire Dawa region, Ethiopia. Journal of the Saudi Society of Agricultural Sciences, 17(1), 88–96.

    Article  Google Scholar 

  17. Mustayen, A. G. M. B., Mekhilef, S., & Saidurb, R. (2014). Performance study of different solar dryers: A review. Renewable and Sustainable Energy Reviews, 34, 463–470.

    Article  Google Scholar 

  18. Nellist, M. E., & O’Callaghan, J. R. (1971). The measurement of drying rates in thin-layers of ryegrass seed. Journal of Agricultural Engineering Research, 16(3), 192–212. https://doi.org/10.1016/S0021-8634(71)80014-8

  19. Panchariya, P. C., Popovic, D., & Sharma, A. L. (2002). Thin-layer modelling of black tea drying process. Journal of Food Engineering, 52(4), 349–357.

    Article  Google Scholar 

  20. Prakash, O., Laguri, V., Pandey, A., Kumar, A., & Kumar, A. (2016). Review on various modelling techniques for the solar dryers. Renewable and Sustainable Energy Reviews, 62, 396–417.

    Article  Google Scholar 

  21. Qu, H., Masud, M. H., Islam, M., Khan, M. I. H., Ananno, A. A., & Karim, A. (2021). Sustainable food drying technologies based on renewable energy sources. Critical Reviews in Food Science and Nutrition, 62(25), 6872–6886.

    Article  Google Scholar 

  22. Simate, I. N., & Cherotich, S. (2017). Design and testing of a natural convection solar tunnel dryer for mango. Journal of Solar Energy, 2017, 4525141.

    Article  Google Scholar 

  23. Tarekegn, K., & Kelem, F. (2022). Assessment of mango post-harvest losses along value chain in the Gamo zone, southern Ethiopia. International Journal of Fruit Science, 22, 170–182.

    Article  Google Scholar 

  24. Yuan, G., Hong, L., Li, X., Xu, L., Tang, W., & Wang, Z. J. E. (2015). Experimental investigation of a solar dryer system for drying carpet. Energy Procedia, 70, 626–633.

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by faculty of mechanical and industrial engineering, Bahir Dar institute of technology, Bahir Dar Energy Center, Bahir Dar University, Ethiopia.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wassie, H.M., Admasu, B.T., Getie, M.Z., Alem, M.S. (2023). Experimental Investigation of Parabolic Solar Dish Concentrator-Based Solar Dryer Assisted with Thermal Energy Storage System. In: Woldegiorgis, B.H., Mequanint, K., Getie, M.Z., Mulat, E.G., Alemayehu Assegie, A. (eds) Advancement of Science and Technology . Green Energy and Technology. Springer, Cham. https://doi.org/10.1007/978-3-031-33610-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33610-2_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33609-6

  • Online ISBN: 978-3-031-33610-2

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics