Skip to main content

GeT a CAKE: Generic Transformations from Key Encaspulation Mechanisms to Password Authenticated Key Exchanges

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13906))

Included in the following conference series:

Abstract

Password Authenticated Key Exchange (PAKE) have become a key building block in many security products as they provide interesting efficiency/security trade-offs. Indeed, a PAKE allows to dispense with the heavy public key infrastructures and its efficiency and portability make it well suited for applications such as Internet of Things or e-passports. With the emerging quantum threat and the effervescent development of post-quantum public key algorithms in the last five years, one would wonder how to modify existing password authenticated key exchange protocols that currently rely on Diffie-Hellman problems in order to include newly introduced and soon-to-be-standardized post-quantum key encapsulation mechanisms (\(\textsf{KEM} \)). A generic solution is desirable for maintaining modularity and adaptability with the many post-quantum \(\textsf{KEM} \) that have been introduced.

In this paper, we propose two new generic and natural constructions proven in the Universal Composability (UC) model to transform, in a black-box manner, a \(\textsf{KEM} \) into a PAKE with very limited performance overhead: one or two extra symmetric encryptions. Behind the simplicity of the designs, establishing security proofs in the UC model is actually non-trivial and requires some additional properties on the underlying KEM like fuzziness and anonymity. Luckily, post-quantum \(\textsf{KEM} \) protocols often enjoy these two extra properties. As a demonstration, we prove that it is possible to apply our transformations to Crystals-Kyber, a lattice-based post-quantum KEM that will soon be standardized by the National Institute of Standards and Technology (NIST).

In a nutshell, this work opens up the possibility to securely include post-quantum cryptography in PAKE-based real-world protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Albrecht, M.R., et al.: Classic McEliece. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/projects/post-quantum-cryptography/round-4-submissions

  2. Abdalla, M., Catalano, D., Chevalier, C., Pointcheval, D.: Efficient two-party password-based key exchange protocols in the UC framework. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 335–351. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79263-5_22

    Chapter  Google Scholar 

  3. Alkim, E., Ducas, L., Pöppelmann, T., Schwabe, P.: NewHope without reconciliation. Cryptology ePrint Archive, Report 2016/1157 (2016). https://eprint.iacr.org/2016/1157

  4. Abdalla, M., Haase, B., Hesse, J.: Security analysis of CPace. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021. Part IV, volume 13093 of LNCS, pp. 711–741. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-030-92068-5_24

    Chapter  Google Scholar 

  5. Abdalla, M., Haase, B., Hesse, J.: CPace, a balanced composable PAKE. Internet-Draft draft-irtf-cfrg-cpace-06, Internet Engineering Task Force. Work in Progress, July (2022)

    Google Scholar 

  6. Bresson, E., Chevassut, O., Pointcheval, D.: Security proofs for an efficient password-based key exchange. In: Jajodia, S., Atluri, V., Jaeger, T., editors, ACM CCS 2003, pp. 241–250. ACM Press, October (2003)

    Google Scholar 

  7. Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M.: Get a cake: generic transformations from key encaspulation mechanisms to password authenticated key exchanges. Cryptology ePrint Archive, Paper 2023/470 (2023). https://eprint.iacr.org/2023/470

  8. Blazy, O., Chevalier, C., Huy Vu, Q.: Post-quantum uc-secure oblivious transfer in the standard model with adaptive corruptions. In: Proceedings of the 14th International Conference on Availability, Reliability and Security, ARES 2019, Canterbury, UK, August 26–29, 2019, pp. 28:1–28:6. ACM (2019)

    Google Scholar 

  9. Bos, J.W.: CRYSTALS - kyber: a cca-secure module-lattice-based KEM. In 2018 IEEE European Symposium on Security and Privacy, EuroS &P 2018, London, United Kingdom, April 24–26, 2018, pp. 353–367. IEEE (2018)

    Google Scholar 

  10. Bellovin, S.M., Merritt, M.: Encrypted key exchange: password-based protocols secure against dictionary attacks. In: 1992 IEEE Symposium on Security and Privacy, pp. 72–84. IEEE Computer Society Press, May (1992)

    Google Scholar 

  11. Bellare, M., Pointcheval, D., Rogaway, P.: Authenticated key exchange secure against dictionary attacks. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 139–155. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_11

    Chapter  Google Scholar 

  12. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: 42nd FOCS, pp. 136–145. IEEE Computer Society Press, October (2001)

    Google Scholar 

  13. Canetti, R., Halevi, S., Katz, J., Lindell, Y., MacKenzie, P.D.: Universally composable password-based key exchange. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 404–421. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_24

    Chapter  Google Scholar 

  14. Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  15. Dupont, P.-A., Hesse, J., Pointcheval, D., Reyzin, L., Yakoubov, S.: Fuzzy password-authenticated key exchange. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018. LNCS, vol. 10822, pp. 393–424. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78372-7_13

    Chapter  Google Scholar 

  16. D’Anvers, J.-P. et al.: SABER. Technical report, National Institute of Standards and Technology (2020). https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions

  17. D’Anvers, J.-P., Karmakar, A., Sinha Roy, S., Vercauteren, F.: Saber: module-LWR based key exchange, CPA-secure encryption and CCA-secure KEM. In: Joux, A., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2018. LNCS, vol. 10831, pp. 282–305. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-89339-6_16

    Chapter  Google Scholar 

  18. Ducas, L., Schanck, J.: pq-crystals/security-estimates. https://github.com/pq-crystals/security-estimates (2021)

  19. ElGamal, T.: A public key cryptosystem and a signature scheme based on discrete logarithms. IEEE Trans. Inf. Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gao, X., Ding, J., Liu, J., Li, L.: Post-quantum secure remote password protocol from RLWE problem. Cryptology ePrint Archive, Report 2017/1196 (2017). https://eprint.iacr.org/2017/1196

  21. Hofheinz, D., Müller-Quade, J.: Universally composable commitments using random oracles. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 58–76. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24638-1_4

    Chapter  Google Scholar 

  22. Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices. Des. Codes Cryptogr. 75(3), 565–599 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. MacKenzie, P.: On the security of the SPEKE password-authenticated key exchange protocol. Cryptology ePrint Archive, Report 2001/057 (2001). https://eprint.iacr.org/2001/057

  24. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. The deep space network progress report 42–44, Jet Propulsion Laboratory, California Institute of Technology, January/February (1978). https://ipnpr.jpl.nasa.gov/progress_report2/42-44/44N.PDF

  25. Poppelmann, T., et al.: NewHope. Technical report, National Institute of Standards and Technology (2019). https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions

  26. Regev, O.: Lattice-based cryptography. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 131–141. Springer, Heidelberg (2006). https://doi.org/10.1007/11818175_8

    Chapter  Google Scholar 

  27. Schwabe, P., et al.: CRYSTALS-KYBER. Technical report, National Institute of Standards and Technology (2022). https://csrc.nist.gov/Projects/post-quantum-cryptography/selected-algorithms-2022

  28. Schmidt, J.-M.: Requirements for password-authenticated key agreement (PAKE) schemes. RFC 8125, 1–10 (2017)

    Google Scholar 

  29. Zhang, J., Yu, Yu.: Two-round PAKE from approximate SPH and instantiations from lattices. In: Takagi, T., Peyrin, T. (eds.) ASIACRYPT 2017. Part III, volume 10626 of LNCS, pp. 37–67. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-70700-6_2

    Chapter  Google Scholar 

Download references

Acknowledgements

We would like to thank Olivier Blazy and Henri Gilbert respectively for useful discussions about password-authenticated key exchange protocols and their security and symmetric encryption for the PAKE practicability. This work was supported in part by the French Programme d’Investissement d’Avenir (PIA) under national project RESQUE and by the French ANR projects CryptiQ (ANR-18- CE39-0015) and SecNISQ (ANR-21-CE47-0014). The first author was also supported by ANRT under the program CIFRE N\(^\circ \) 2021/0645.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Beguinet .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 82 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Beguinet, H., Chevalier, C., Pointcheval, D., Ricosset, T., Rossi, M. (2023). GeT a CAKE: Generic Transformations from Key Encaspulation Mechanisms to Password Authenticated Key Exchanges. In: Tibouchi, M., Wang, X. (eds) Applied Cryptography and Network Security. ACNS 2023. Lecture Notes in Computer Science, vol 13906. Springer, Cham. https://doi.org/10.1007/978-3-031-33491-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33491-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33490-0

  • Online ISBN: 978-3-031-33491-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics