Skip to main content

Boltzmann’s Statistical Mechanics

  • Chapter
  • First Online:
Typicality Reasoning in Probability, Physics, and Metaphysics

Part of the book series: New Directions in the Philosophy of Science ((NDPS))

  • 80 Accesses

Abstract

This chapter will discuss statistical mechanics in the manner of Ludwig Boltzmann (1844–1906). I will focus, in particular, on Boltzmann’s account of thermodynamic irreversibility and the second law of thermodynamics—the most profound legacy of the great Austrian physicist, in which the role of typicality comes out particularly clearly. In contemporary philosophical literature, this account is sometimes referred to as “neo-Boltzmannian,” a term that strikes me as overly flattering to both Boltzmann’s critics and his contemporary defenders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See Bricmont (1995) and Lazarovici and Reichert (2015) for replies to some of the most common ones.

  2. 2.

    Poincaré recurrence theorem: Let \(A\subset \Gamma \) be a set of positive Liouville measure. Then, for almost all \(X \in A\), there exists a sequence of times \(t_i \to \infty \) such that \(X(t_i)=\Phi _{t_i,0}(X)\in A, \, \forall i \in \mathbb {N}\).

  3. 3.

    The confusion has other sources that I can’t go into here, from misunderstandings of Maxwell’s demon to formal analogies between the Gibbs entropy and the information-theoretic Shannon entropy that lead to confounding the two concepts.

  4. 4.

    Glenn Shafer has pointed out to me that it doesn’t even make sense to say that a fluctuating quantity “increases” or “decreases” without a specification of the time scales to which such a statement refers.

  5. 5.

    A rigorous estimate:

    $$\displaystyle \begin{aligned} \begin{aligned} \lvert \langle f \rangle - (1-\epsilon)\xi\rvert &\leq \int_{\Gamma_{\mathrm{eq}}} \lvert f(x) - \xi \rvert\, \rho(x) \, \mathrm{d}x + \int_{\Gamma\setminus\Gamma_{\mathrm{eq}}} \lvert f(x) \rvert\rho(x) \, \mathrm{d}x \\ &\leq (1-\epsilon) \Delta\xi + \epsilon \sup_{x \in \Gamma\setminus\Gamma_{\mathrm{eq}}} \lvert f(x)\rvert, \end{aligned}\end{aligned}$$

    and thus \( \langle f \rangle \approx \xi \) assuming \(\epsilon \sup _{x \in \Gamma \setminus \Gamma _{\mathrm {eq}}} \lvert f(x)\rvert \ll \lvert \xi \rvert \).

  6. 6.

    Together with some appropriate bound on the variation of the macro-variable.

  7. 7.

    Unless that average just happens to correspond itself to one of the Boltzmann equilibrium values.

References

  • Albert, D. Z. (2000). Time and chance. Cambridge, Massachusetts: Harvard University Press.

    Book  MATH  Google Scholar 

  • Boltzmann, L. (1896). Entgegnung auf die wärmetheoretischen Betrachtungen des Hrn. E. Zermelo. Wiedemanns Annalen, 57, 773–784.

    MATH  Google Scholar 

  • Bricmont, J. (1995). Science of chaos or chaos in science? Annals of the New York Academy of Sciences, 775(1), 131–175.

    Article  ADS  MathSciNet  Google Scholar 

  • Bricmont, J. (2022). Making sense of statistical mechanics. Undergraduate lecture notes in physics. Cham: Springer International Publishing.

    Google Scholar 

  • Carroll, S. (2010). From eternity to here. New York: Dutton.

    Google Scholar 

  • Ehrenfest, P. a. T. (1907). Begriffliche Grundlagen der Statistischen Auffassung in der Mechanik. In F. Klein & C. Müller (Eds.). Mechanik (pp. 773–860). Wiesbaden: Vieweg+Teubner Verlag.

    Google Scholar 

  • Frigg, R. (2011). Why typicality does not explain the approach to equilibrium. In M. Suárez (Ed.). Probabilities, causes and propensities in physics. Synthese Library (pp. 77–93). Dordrecht: Springer Netherlands.

    Chapter  Google Scholar 

  • Goldstein, S. (2001). Boltzmann’s approach to statistical mechanics. In J. Bricmont, D. Dürr, M. C. Galavotti, G. Ghirardi, F. Petruccione, & N. Zanghì (eds.). Chance in physics: Foundations and perspectives (pp. 39–54). Berlin: Springer.

    Chapter  Google Scholar 

  • Goldstein, S. (2019). Individualist and ensemblist approaches to the foundations of statistical mechanics. The Monist, 102(4), 439–457.

    Article  Google Scholar 

  • Goldstein, S., Lebowitz, J. L., Tumulka, R., & Zanghì, N. (2020). Gibbs and Boltzmann entropy in classical and quantum mechanics. In Statistical mechanics and scientific explanation (pp. 519–581). World Scientific.

    Google Scholar 

  • Lavis, D. A. (2005). Boltzmann and Gibbs: An attempted reconciliation. Studies in History and Philosophy of Science Part B: Studies in History and Philosophy of Modern Physics, 36(2), 245–273.

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Lazarovici, D. (2019). On Boltzmann versus Gibbs and the equilibrium in statistical mechanics. Philosophy of Science, 86(4), 785–793.

    Article  MathSciNet  Google Scholar 

  • Lazarovici, D. & Reichert, P. (2015). Typicality, irreversibility and the status of macroscopic laws. Erkenntnis, 80(4), 689–716.

    Article  MathSciNet  MATH  Google Scholar 

  • Lebowitz, J. L. (1993a). Boltzmann’s entropy and time’s arrow. Physics Today, 46(9), 32–38.

    Article  Google Scholar 

  • Lebowitz, J. L. (1993b). Macroscopic laws, microscopic dynamics, time’s arrow and Boltzmann’s entropy. Physica A, 194(1–4), 1–27.

    Article  ADS  MathSciNet  Google Scholar 

  • Penrose, R. (1989). The emperor’s new mind: Concerning computers, minds, and the laws of physics. Oxford: Oxford University Press.

    Book  MATH  Google Scholar 

  • Reichert, P. (2023). Essentially ergodic behaviour. The British Journal for the Philosophy of Science, 74(1), 57–73.

    Article  MathSciNet  Google Scholar 

  • Schwabl, F. (2006). Statistical mechanics. Advanced texts in physics. Berlin: Springer.

    Google Scholar 

  • Uffink, J. (2011). Subjective probability and statistical physics. In Probabilities in physics. Oxford: Oxford University Press.

    Google Scholar 

  • Werndl, C. & Frigg, R. (2015). Rethinking Boltzmannian equilibrium. Philosophy of Science, 82(5), 1224–1235.

    Article  MathSciNet  MATH  Google Scholar 

  • Werndl, C. & Frigg, R. (2017). Mind the gap: Boltzmannian versus Gibbsian equilibrium. Philosophy of Science, 84(5), 1289–1302.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lazarovici, D. (2023). Boltzmann’s Statistical Mechanics. In: Typicality Reasoning in Probability, Physics, and Metaphysics. New Directions in the Philosophy of Science. Palgrave Macmillan, Cham. https://doi.org/10.1007/978-3-031-33448-1_8

Download citation

Publish with us

Policies and ethics