Skip to main content

GTEA: Inductive Representation Learning on Temporal Interaction Graphs via Temporal Edge Aggregation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Abstract

In this paper, we propose the Graph Temporal Edge Aggregation (GTEA) framework for inductive learning on Temporal Interaction Graphs (TIGs). Different from previous works, GTEA models the temporal dynamics of interaction sequences in the continuous-time space and simultaneously takes advantage of both rich node and edge/ interaction attributes in the graph. Concretely, we integrate a sequence model with a time encoder to learn pairwise interactional dynamics between two adjacent nodes. This helps capture complex temporal interactional patterns of a node pair along the history, which generates edge embeddings that can be fed into a GNN backbone. By aggregating features of neighboring nodes and the corresponding edge embeddings, GTEA jointly learns both topological and temporal dependencies of a TIG. In addition, a sparsity-inducing self-attention scheme is incorporated for neighbor aggregation, which highlights more important neighbors and suppresses trivial noises for GTEA. By jointly optimizing the sequence model and the GNN backbone, GTEA learns more comprehensive node representations capturing both temporal and graph structural characteristics. Extensive experiments on five large-scale real-world datasets demonstrate the superiority of GTEA over other inductive models.

S. Xie and Y. Li—Equal contributions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Appendix can be found in: https://github.com/xslangley/GTEA.

  2. 2.

    Raw data: https://www.kaggle.com/xblock/ethereum-phishing-transaction-network.

References

  1. Bielak, P., Kajdanowicz, T., Chawla, N.V.: Attre2vec: unsupervised attributed edge representation learning. arXiv preprint arXiv:2012.14727 (2020)

  2. Gong, L., Cheng, Q.: Exploiting edge features for graph neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 9211–9219 (2019)

    Google Scholar 

  3. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  4. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, pp. 1024–1034 (2017)

    Google Scholar 

  5. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  6. Huang, S., Bao, Z., Culpepper, J.S., Zhang, B.: Finding temporal influential users over evolving social networks. In: 2019 IEEE 35th International Conference on Data Engineering (ICDE), pp. 398–409. IEEE (2019)

    Google Scholar 

  7. Jiang, X., Zhu, R., Li, S., Ji, P.: Co-embedding of nodes and edges with graph neural networks. IEEE Trans. Pattern Anal. Mach. Intell. (2020)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  9. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1269–1278 (2019)

    Google Scholar 

  10. Li, Y., Yu, R., Shahabi, C., Liu, Y.: Diffusion convolutional recurrent neural network: data-driven traffic forecasting. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  11. Ma, Y., Guo, Z., Ren, Z., Tang, J., Yin, D.: Streaming graph neural networks. In: Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 719–728 (2020)

    Google Scholar 

  12. Martins, A., Astudillo, R.: From softmax to sparsemax: a sparse model of attention and multi-label classification. In: International Conference on Machine Learning, pp. 1614–1623 (2016)

    Google Scholar 

  13. Mehran Kazemi, S., et al.: Time2vec: learning a vector representation of time. arXiv preprint arXiv:1907.05321 (2019)

  14. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-time dynamic network embeddings. In: Companion Proceedings of the Web Conference 2018, pp. 969–976 (2018)

    Google Scholar 

  15. Qiu, Z., Hu, W., Wu, J., Liu, W., Du, B., Jia, X.: Temporal network embedding with high-order nonlinear information. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5436–5443 (2020)

    Google Scholar 

  16. Qu, L., Zhu, H., Duan, Q., Shi, Y.: Continuous-time link prediction via temporal dependent graph neural network. In: Proceedings of the Web Conference 2020, pp. 3026–3032 (2020)

    Google Scholar 

  17. Rahimi, A., Recht, B.: Random features for large-scale kernel machines. In: Advances in Neural Information Processing Systems, pp. 1177–1184 (2008)

    Google Scholar 

  18. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.: Temporal graph networks for deep learning on dynamic graphs. arXiv preprint arXiv:2006.10637 (2020)

  19. Shi, Y., Huang, Z., Wang, W., Zhong, H., Feng, S., Sun, Y.: Masked label prediction: unified message passing model for semi-supervised classification. arXiv preprint arXiv:2009.03509 (2020)

  20. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3693–3702 (2017)

    Google Scholar 

  21. Singer, U., Guy, I., Radinsky, K.: Node embedding over temporal graphs. In: Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19, pp. 4605–4612. International Joint Conferences on Artificial Intelligence Organization, July 2019. https://doi.org/10.24963/ijcai.2019/640

  22. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: Deep temporal reasoning for dynamic knowledge graphs. arXiv preprint arXiv:1705.05742 (2017)

  23. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: learning representations over dynamic graphs (2018)

    Google Scholar 

  24. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  26. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. (TOG) 38(5), 1–12 (2019)

    Article  Google Scholar 

  27. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Inductive representation learning on temporal graphs. arXiv preprint arXiv:2002.07962 (2020)

  28. Yu, B., Yin, H., Zhu, Z.: Spatio-temporal graph convolutional networks: a deep learning framework for traffic forecasting. In: Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI) (2018)

    Google Scholar 

  29. Zhang, J., Shi, X., Xie, J., Ma, H., King, I., Yeung, D.Y.: GAAN: gated attention networks for learning on large and spatiotemporal graphs. arXiv preprint arXiv:1803.07294 (2018)

  30. Zhang, Z., et al.: Learning temporal interaction graph embedding via coupled memory networks. In: Proceedings of The Web Conference 2020, pp. 3049–3055 (2020)

    Google Scholar 

  31. Zuo, Y., Liu, G., Lin, H., Guo, J., Hu, X., Wu, J.: Embedding temporal network via neighborhood formation. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2857–2866 (2018)

    Google Scholar 

Download references

Acknowledgements

This research is supported in part by the Innovation and Technology Committee of HKSAR under the project#ITS/244/16, the CUHK MobiTeC R &D Fund and a gift from Tencent.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyue Xie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, S. et al. (2023). GTEA: Inductive Representation Learning on Temporal Interaction Graphs via Temporal Edge Aggregation. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13936. Springer, Cham. https://doi.org/10.1007/978-3-031-33377-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33377-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33376-7

  • Online ISBN: 978-3-031-33377-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics