Skip to main content

Feedback Effect in User Interaction with Intelligent Assistants: Delayed Engagement, Adaption and Drop-out

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Abstract

With the growing popularity of intelligent assistants (IAs), evaluating IA quality becomes an increasingly active field of research. This paper identifies and quantifies the feedback effect, a novel component in IA-user interactions – how the capabilities and limitations of the IA influence user behavior over time. First, we demonstrate that unhelpful responses from the IA cause users to delay or reduce subsequent interactions in the short term via an observational study. Next, we expand the time horizon to examine behavior changes and show that as users discover the limitations of the IA’s understanding and functional capabilities, they learn to adjust the scope and wording of their requests to increase the likelihood of receiving a helpful response from the IA. Our findings highlight the impact of the feedback effect at both the micro and meso levels. We further discuss its macro-level consequences: unsatisfactory interactions continuously reduce the likelihood and diversity of future user engagements in a feedback loop.

Y. Zhang—Contributions made during the internship at Apple in the summer of 2022.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    This value is not necessarily a reflection of the aggregated or expected satisfaction metric, due to the sampling method and potential bias in the subpopulation of choice.

  2. 2.

    The IA helpfulness of a given user request is defined as the user’s satisfaction with the IA’s response to the request, as determined by human annotators. .

  3. 3.

    Supplemental Materials: https://machinelearning.apple.com/research/feedback-effect.

  4. 4.

    Propensity weighting methods: https://cran.r-project.org/web/packages/PSweight.

References

  1. Adiwardana, D., et al.: Towards a human-like open-domain chatbot. arXiv preprint arXiv:2001.09977 (2020)

  2. Andersen, P.K., Syriopoulou, E., Parner, E.T.: Causal inference in survival analysis using pseudo-observations. Stat. Med. 36(17), 2669–2681 (2017)

    Article  MathSciNet  Google Scholar 

  3. de Barcelos Silva, A., et al.: Intelligent personal assistants: a systematic literature review. Expert Syst. Appl. 147, 113193 (2020)

    Google Scholar 

  4. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing text with the natural language toolkit. O’Reilly Media, Inc (2009)

    Google Scholar 

  5. Chattaraman, V., Kwon, W.S., Gilbert, J.E., Ross, K.: Should AI-based, conversational digital assistants employ social-or task-oriented interaction style? A task-competency and reciprocity perspective for older adults. Comput. Hum. Behav. 90, 315–330 (2019)

    Article  Google Scholar 

  6. Duplessis, G., Clavel, C., Landragin, F.: Automatic measures to characterise verbal alignment in human-agent interaction. In: SIGdial (2017)

    Google Scholar 

  7. Friedberg, H., Litman, D., Paletz, S.B.: Lexical entrainment and success in student engineering groups. In: SLT (2012)

    Google Scholar 

  8. Gao, J., Galley, M., Li, L.: Neural approaches to conversational AI. Found. Trends Inf. Retr. 13(2–3), 127–298 (2019)

    Article  Google Scholar 

  9. Glass, J.: Challenges for spoken dialogue systems. In: Proceedings of the 1999 IEEE ASRU Workshop, vol. 696 (1999)

    Google Scholar 

  10. Holland, P.W.: Statistics and causal inference. J. Am. Stat. Assoc. 81(396), 945–960 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  11. Iacus, S.M., King, G., Porro, G.: Causal inference without balance checking: Coarsened exact matching. Polit. Anal. 20(1), 1–24 (2012)

    Article  Google Scholar 

  12. Jiang, J., et al.: Automatic online evaluation of intelligent assistants. In: WWW (2015)

    Google Scholar 

  13. Jurafsky, D.: Speech & language processing. Pearson Education India (2000)

    Google Scholar 

  14. Kepuska, V., Bohouta, G.: Next-generation of virtual personal assistants (Microsoft Cortana, Apple Siri, Amazon Alexa and Google Home). In: IEEE CCWC (2018)

    Google Scholar 

  15. Kiseleva, J., et al.: Understanding user satisfaction with intelligent assistants. In: CHIIR (2016)

    Google Scholar 

  16. Komatani, K., Kawahara, T., Okuno, H.G.: Analyzing temporal transition of real user’s behaviors in a spoken dialogue system. In: INTERSPEECH (2007)

    Google Scholar 

  17. Lee, D., et al.: A voice QR code for mobile devices. In: Lee, G.G., Kim, H.K., Jeong, M., Kim, J.-H. (eds.) Natural Language Dialog Systems and Intelligent Assistants, pp. 97–100. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19291-8_9

    Chapter  Google Scholar 

  18. Lee, N., Bang, Y., Madotto, A., Khabsa, M., Fung, P.: Towards few-shot fact-checking via perplexity. In: NAACL (2021)

    Google Scholar 

  19. Levow, G.A.: Learning to speak to a spoken language system: vocabulary convergence in novice users. In: SIGDIAL Workshop of Discourse and Dialogue (2003)

    Google Scholar 

  20. Li, F., Morgan, K.L., Zaslavsky, A.M.: Balancing covariates via propensity score weighting. J. Am. Statist. Assoc. 113(521), 1260466 (2018)

    Google Scholar 

  21. Liu, W., Kuramoto, S.J., Stuart, E.A.: An introduction to sensitivity analysis for unobserved confounding in nonexperimental prevention research. Prev. Sci. 14, 570–580 (2013)

    Article  Google Scholar 

  22. Lopatovska, I., et al.: Talk to me: exploring user interactions with the amazon Alexa. J. Librarianship Inf. Sci. 51(4), 984–997 (2019)

    Google Scholar 

  23. Miller, R.G.: Survival analysis. John Wiley & Sons (2011)

    Google Scholar 

  24. Nenkova, A., Gravano, A., Hirschberg, J.: High frequency word entrainment in spoken dialogue. In: HLT, Short Papers (2008)

    Google Scholar 

  25. Parent, G., Eskenazi, M.: Lexical entrainment of real users in the let’s go spoken dialog system. In: ISCA (2010)

    Google Scholar 

  26. Purington, A., Taft, J.G., Sannon, S., Bazarova, N.N., Taylor, S.H.: “Alexa is my new BFF” social roles, user satisfaction, and personification of the Amazon Echo. In: CHI (2017)

    Google Scholar 

  27. Reitter, D., Keller, F., Moore, J.D.: Computational modelling of structural priming in dialogue. In: HLT (2006)

    Google Scholar 

  28. Rubin, D.B.: Estimating causal effects of treatments in randomized and nonrandomized studies. J. Educ. Psychol. 66, 688 (1974)

    Article  Google Scholar 

  29. Santos, J., Rodrigues, J., Casal, J., Saleem, K., Denisov, V.: Intelligent personal assistants based on internet of things approaches. IEEE Syst. J. 12(2), 1793–1802 (2016)

    Article  Google Scholar 

  30. Walker, M.A., Stent, A., Mairesse, F., Prasad, R.: Individual and domain adaptation in sentence planning for dialogue. J. Artif. Intell. Res. 30, 413–456 (2007)

    Article  MATH  Google Scholar 

  31. Wen, T.H., Gasic, M., Mrksic, N., Su, P.H., Vandyke, D., Young, S.: Semantically conditioned LSTM-based natural language generation for spoken dialogue systems. In: EMNLP (2015)

    Google Scholar 

  32. Xiu, Z., Tao, C., Henao, R.: Variational learning of individual survival distributions. In: Proceedings of the ACM Conference on Health, Inference, and Learning (2020)

    Google Scholar 

  33. Zeng, S., Li, F., Hu, L.: Propensity score weighting analysis of survival outcomes using pseudo-observations. Stat. Sin. (2021). https://doi.org/10.5705/ss.202021.0175

    Article  Google Scholar 

Download references

Acknowledgements

This work was made possible by Zak Aldeneh, Russ Webb, Barry Theobald, Patrick Miller, Julia Lin, Tony Y. Li, Leneve Gorbaty, Jessica Maria Echterhof and many others at Apple. We also thank Ricardo Henao and Shuxi Zeng at Duke University for their support and feedback.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zidi Xiu or David Q. Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xiu, Z. et al. (2023). Feedback Effect in User Interaction with Intelligent Assistants: Delayed Engagement, Adaption and Drop-out. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13936. Springer, Cham. https://doi.org/10.1007/978-3-031-33377-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33377-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33376-7

  • Online ISBN: 978-3-031-33377-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics