Skip to main content

GroupMixNorm Layer for Learning Fair Models

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2023)

Abstract

Recent research has identified discriminatory behavior of automated prediction algorithms towards groups identified on specific protected attributes (e.g., gender, ethnicity, age group, etc.). When deployed in real-world scenarios, such techniques may demonstrate biased predictions resulting in unfair outcomes. Recent literature has witnessed algorithms for mitigating such biased behavior mostly by adding convex surrogates of fairness metrics such as demographic parity or equalized odds in the loss function, which are often not easy to estimate. This research proposes a novel in-processing based GroupMixNorm layer for mitigating bias from deep learning models. The GroupMixNorm layer probabilistically mixes group-level feature statistics of samples across different groups based on the protected attribute. The proposed method improves upon several fairness metrics with minimal impact on overall accuracy. Analysis on benchmark tabular and image datasets demonstrates the efficacy of the proposed method in achieving state-of-the-art performance. Further, the experimental analysis also suggests the robustness of the GroupMixNorm layer against new protected attributes during inference and its utility in eliminating bias from a pre-trained network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://tinyurl.com/5apv7xeu.

References

  1. Agarwal, A., Beygelzimer, A., Dudík, M., Langford, J., Wallach, H.M.: A reductions approach to fair classification. In: ICML. vol. 80, pp. 60–69 (2018)

    Google Scholar 

  2. Ahuja, K., Shanmugam, K., Varshney, K.R., Dhurandhar, A.: Invariant risk minimization games. In: ICML. 119, 145–155 (2020)

    Google Scholar 

  3. Arjovsky, M., Bottou, L., Gulrajani, I., Lopez-Paz, D.: Invariant risk minimization. CoRR abs/1907.02893 (2019)

    Google Scholar 

  4. Barocas, S., Hardt, M., Narayanan, A.: Fairness and Machine Learning. fairmlbook.org (2019), http://www.fairmlbook.org

  5. Cheng, P., Hao, W., Yuan, S., Si, S., Carin, L.: FairFil: Contrastive neural debiasing method for pretrained text encoders. In: ICLR (2021)

    Google Scholar 

  6. Chuang, C., Mroueh, Y.: Fair mixup: Fairness via interpolation. In: ICLR. Virtual Event, Austria, May 3–7, 2021 (2021)

    Google Scholar 

  7. Cotter, A. et al.: Training well-generalizing classifiers for fairness metrics and other data-dependent constraints. In: ICML. vol. 97, pp. 1397–1405 (2019)

    Google Scholar 

  8. Du, M., Mukherjee, S., Wang, G., Tang, R., Awadallah, A., Hu, X.: Fairness via representation neutralization. In: NeurIPS, vol. 34 (2021)

    Google Scholar 

  9. Dua, D., Graff, C.: UCI machine learning repository (2017), http://archive.ics.uci.edu/ml

  10. Hardt, M., Price, E., Srebro, N.: Equality of opportunity in supervised learning. In: NeurIPS, pp. 3315–3323 (2016)

    Google Scholar 

  11. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, pp. 770–778 (2016)

    Google Scholar 

  12. Kilbertus, N. et al.: Avoiding discrimination through causal reasoning. In: NeurIPS, pp. 656–666 (2017)

    Google Scholar 

  13. Kim, B., Kim, H., Kim, K., Kim, S., Kim, J.: Learning not to learn: Training deep neural networks with biased data. In: IEEE CVPR, pp. 9012–9020 (2019)

    Google Scholar 

  14. Kusner, M.J., Loftus, J.R., Russell, C., Silva, R.: Counterfactual fairness. In: NeurIPS, pp. 4066–4076 (2017)

    Google Scholar 

  15. Liu, Z., Luo, P., Wang, X., Tang, X.: Large-scale celebfaces attributes (celeba) dataset. Retrieved August 15(2018), 11 (2018)

    Google Scholar 

  16. Manisha, P., Gujar, S.: FNNC: Achieving fairness through neural networks. In: IJCAI, pp. 2277–2283 (2020)

    Google Scholar 

  17. Singh, K.K., Mahajan, D., Grauman, K., Lee, Y.J., Feiszli, M., Ghadiyaram, D.: Don’t judge an object by its context: Learning to overcome contextual bias. In: IEEE/CVF CVPR, pp. 11067–11075 (2020)

    Google Scholar 

  18. Verma, S., Rubin, J.: Fairness definitions explained. In: International Workshop on Software Fairness, pp. 1–7 (2018)

    Google Scholar 

  19. Verma, V. et al.: Manifold mixup: Better representations by interpolating hidden states. In: ICML. vol. 97, pp. 6438–6447 (2019)

    Google Scholar 

  20. Woodworth, B.E., Gunasekar, S., Ohannessian, M.I., Srebro, N.: Learning non-discriminatory predictors. In: COLT. 65, 1920–1953 (2017)

    Google Scholar 

  21. Zafar, M.B., Valera, I., Gomez-Rodriguez, M., Gummadi, K.P.: Fairness constraints: Mechanisms for fair classification. In: AIStat. vol. 54, pp. 962–970 (2017)

    Google Scholar 

  22. Zhang, B.H., Lemoine, B., Mitchell, M.: Mitigating unwanted biases with adversarial learning. In: AAAI/ACM AIES, pp. 335–340 (2018)

    Google Scholar 

  23. Zhang, H., Cissé, M., Dauphin, Y.N., Lopez-Paz, D.: Mixup: Beyond empirical risk minimization. In: ICLR (2018)

    Google Scholar 

  24. Zunino, A. et al.: Explainable deep classification models for domain generalization. In: IEEE CVPRW, pp. 3233–3242 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anubha Pandey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pandey, A., Rai, A., Singh, M., Bhatt, D., Bhowmik, T. (2023). GroupMixNorm Layer for Learning Fair Models. In: Kashima, H., Ide, T., Peng, WC. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2023. Lecture Notes in Computer Science(), vol 13935. Springer, Cham. https://doi.org/10.1007/978-3-031-33374-3_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33374-3_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33373-6

  • Online ISBN: 978-3-031-33374-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics