Skip to main content

Microbiota Composition of Breast Milk

  • Chapter
  • First Online:
Breastfeeding and Metabolic Programming

Abstract

The community of microorganisms, including bacteria, viruses, fungi, and protozoa residing within the human intestinal tract, which is defined as gut microbiota, plays a significant role in metabolic, neurobehavioral, endocrine, and immune pathways influencing child growth and development [1–3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bull MJ, Plummer NT. Part 1: the human gut microbiome in health and disease. Integr Med (Encinitas). 2014;13:17–22.

    PubMed  Google Scholar 

  2. Robertson RC, Manges AR, Finlay BB, Prendergast AJ. The human microbiome and child growth – first 1000 days and beyond. Trends Microbiol. 2019;27:131–47. https://doi.org/10.1016/j.tim.2018.09.008.

    Article  CAS  PubMed  Google Scholar 

  3. Valdes AM, Walter J, Segal E, Spector TD. Role of the gut microbiota in nutrition and health. BMJ (Online). 2018;361:36–44. https://doi.org/10.1136/bmj.k2179.

    Article  Google Scholar 

  4. Jian C, Carpén N, Helve O, et al. Early-life gut microbiota and its connection to metabolic health in children: perspective on ecological drivers and need for quantitative approach. EBioMedicine. 2021;69:103475.

    Article  PubMed  PubMed Central  Google Scholar 

  5. O’Sullivan A, Farver M, Smilowitz JT. The influence of early infant-feeding practices on the intestinal microbiome and body composition in infants. Nutr Metab Insights. 2015;8:1–9. https://doi.org/10.4137/NMI.S29530.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pannaraj PS, Li F, Cerini C, et al. Association between breast Milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatr. 2017;171:647–54. https://doi.org/10.1001/jamapediatrics.2017.0378.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Boix-Amorós A, Martinez-Costa C, Querol A, et al. Multiple approaches detect the presence of fungi in human breastmilk samples from healthy mothers. Sci Rep. 2017;7:13016. https://doi.org/10.1038/s41598-017-13270-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Duranti S, Lugli GA, Mancabelli L, et al. Maternal inheritance of bifidobacterial communities and bifidophages in infants through vertical transmission. Microbiome. 2017;5:66. https://doi.org/10.1186/s40168-017-0282-6.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Heikkilä MP, Saris PEJ. Inhibition of Staphylococcus aureus by the commensal bacteria of human milk. J Appl Microbiol. 2003;95:471–8. https://doi.org/10.1046/j.1365-2672.2003.02002.x.

    Article  CAS  PubMed  Google Scholar 

  10. Asnicar F, Manara S, Zolfo M, et al. Studying vertical microbiome transmission from mothers to infants by strain-level metagenomic profiling. mSystems. 2017:2. https://doi.org/10.1128/msystems.00164-16.

  11. Dudgeon LS, Jewesbury RC. The bacteriology of human milk. J Hyg (Lond). 1924;23:54–76.

    Article  Google Scholar 

  12. Martín R, Langa S, Reviriego C, et al. Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr. 2003;143:754–8. https://doi.org/10.1016/j.jpeds.2003.09.028.

    Article  PubMed  Google Scholar 

  13. Fernández L, Pannaraj PS, Rautava S, Rodríguez JM. The microbiota of the human mammary ecosystem. Front cell Infect Microbiol. 2020;10:10.

    Article  Google Scholar 

  14. McGuire MK, McGuire MA. Got bacteria? The astounding, yet not-so-surprising, microbiome of human milk. Curr Opin Biotechnol. 2017;44:63–8.

    Article  CAS  PubMed  Google Scholar 

  15. Ramsay DT, Kent JC, Owens RA, Hartmann PE. Ultrasound imaging of milk ejection in the breast of lactating women. Pediatrics. 2004;113:361–7. https://doi.org/10.1542/peds.113.2.361.

    Article  PubMed  Google Scholar 

  16. Cabrera-Rubio R, Collado MC, Laitinen K, et al. The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr. 2012;96:544–51. https://doi.org/10.3945/ajcn.112.037382.

    Article  CAS  PubMed  Google Scholar 

  17. Kordy K, Gaufin T, Mwangi M, et al. Contributions to human breast milk microbiome and enteromammary transfer of Bifidobacterium breve. PLoS One. 2020;15:e0219633. https://doi.org/10.1371/journal.pone.0219633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Civardi E, Garofoli F, Tzialla C, et al. Microorganisms in human milk: lights and shadows. J Matern Fetal Neonatal Med. 2013;26:30–4.

    Article  PubMed  Google Scholar 

  19. Martín R, Langa S, Reviriego C, et al. The commensal microflora of human milk: new perspectives for food bacteriotherapy and probiotics. Trends Food Sci Technol. 2004;15:121–7.

    Article  Google Scholar 

  20. Perez PF, Doré J, Leclerc M, et al. Bacterial imprinting of the neonatal immune system: lessons from maternal cells? Pediatrics. 2007;119:e724–32. https://doi.org/10.1542/peds.2006-1649.

    Article  PubMed  Google Scholar 

  21. Rescigno M, Urbano M, Valzasina B, et al. Dendritic cells express tight junction proteins and penetrate gut epithelial monolayers to sample bacteria. Nat Immunol. 2001;2:361–7. https://doi.org/10.1038/86373.

    Article  CAS  PubMed  Google Scholar 

  22. Thum C, Cookson AL, Otter DE, et al. Can nutritional modulation of maternal intestinal microbiota influence the development of the infant gastrointestinal tract? J Nutr. 2012;142:1921–8. https://doi.org/10.3945/jn.112.166231.

    Article  CAS  PubMed  Google Scholar 

  23. Rodríguez JM. The origin of human milk bacteria: is there a bacterial entero-mammary pathway during late pregnancy and lactation? Adv Nutr. 2014;5:779–84. https://doi.org/10.3945/an.114.007229.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Damaceno QS, Souza JP, Nicoli JR, et al. Evaluation of potential probiotics isolated from human milk and colostrum. Probiotics Antimicrob Proteins. 2017;9:371–9. https://doi.org/10.1007/s12602-017-9270-1.

    Article  PubMed  Google Scholar 

  25. Consales A, Cerasani J, Sorrentino G, et al. The hidden universe of human milk microbiome: origin, composition, determinants, role, and future perspectives. Eur J Pediatr. 2022;181:1811–20.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Notarbartolo V, Giuffre M, Montante C, et al. Composition of human breast Milk microbiota and its role in children’s health. Pediatr Gastroenterol Hepatol Nutr. 2022;25:194–210. https://doi.org/10.5223/pghn.2022.25.3.194.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Martín R, Jiménez E, Heilig H, et al. Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol. 2009;75:965–9. https://doi.org/10.1128/AEM.02063-08.

    Article  CAS  PubMed  Google Scholar 

  28. Selma-Royo M, Calvo Lerma J, Cortés-Macías E, Collado MC. Human milk microbiome: from actual knowledge to future perspective. Semin Perinatol. 2021;45:151450. https://doi.org/10.1016/j.semperi.2021.151450.

    Article  PubMed  Google Scholar 

  29. Zimmermann P, Curtis N. Breast milk microbiota: a review of the factors that influence composition. J Infect. 2020;81:17–47.

    Article  CAS  PubMed  Google Scholar 

  30. Khodayar-Pardo P, Mira-Pascual L, Collado MC, Martínez-Costa C. Impact of lactation stage, gestational age and mode of delivery on breast milk microbiota. J Perinatol. 2014;34:599–605. https://doi.org/10.1038/jp.2014.47.

    Article  CAS  PubMed  Google Scholar 

  31. Huang MS, Cheng CC, Tseng SY, et al. Most commensally bacterial strains in human milk of healthy mothers display multiple antibiotic resistance. Microbiology. 2019;8:e00618. https://doi.org/10.1002/mbo3.618.

    Article  CAS  Google Scholar 

  32. Aakko J, Kumar H, Rautava S, et al. Human milk oligosaccharide categories define the microbiota composition in human colostrum. Benef Microbes. 2017;8:563–7. https://doi.org/10.3920/BM2016.0185.

    Article  CAS  PubMed  Google Scholar 

  33. Collado MC, Delgado S, Maldonado A, Rodríguez JM. Assessment of the bacterial diversity of breast milk of healthy women by quantitative real-time PCR. Lett Appl Microbiol. 2009;48:523–8. https://doi.org/10.1111/j.1472-765X.2009.02567.x.

    Article  CAS  PubMed  Google Scholar 

  34. González R, Mandomando I, Fumadó V, et al. Breast milk and gut microbiota in African mothers and infants from an area of high HIV prevalence. PLoS One. 2013;8:e80299. https://doi.org/10.1371/journal.pone.0080299.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Obermajer T, Lipoglavšek L, Tompa G, et al. Colostrum of healthy Slovenian mothers: microbiota composition and bacteriocin gene prevalence. PLoS One. 2015;10 https://doi.org/10.1371/journal.pone.0123324.

  36. Ojo-Okunola A, Nicol M, du Toit E. Human breast milk bacteriome in health and disease. Nutrients. 2018;10

    Google Scholar 

  37. Ding M, Qi C, Yang Z, et al. Geographical location specific composition of cultured microbiota and: lactobacillus occurrence in human breast milk in China. Food Funct. 2019;10:554–64. https://doi.org/10.1039/c8fo02182a.

    Article  CAS  PubMed  Google Scholar 

  38. Moossavi S, Sepehri S, Robertson B, et al. Composition and variation of the human milk microbiota are influenced by maternal and early-life factors. Cell Host Microbe. 2019;25:324–335.e4. https://doi.org/10.1016/j.chom.2019.01.011.

    Article  CAS  PubMed  Google Scholar 

  39. Simpson MR, Avershina E, Storrø O, et al. Breastfeeding-associated microbiota in human milk following supplementation with lactobacillus rhamnosus GG, lactobacillus acidophilus La-5, and Bifidobacterium animalis ssp. lactis bb-12. J Dairy Sci. 2018;101:889–99. https://doi.org/10.3168/jds.2017-13411.

    Article  CAS  PubMed  Google Scholar 

  40. Li SW, Watanabe K, Hsu CC, et al. Bacterial composition and diversity in breast milk samples from mothers living in Taiwan and mainland China. Front Microbiol. 2017;8 https://doi.org/10.3389/fmicb.2017.00965.

  41. Jiménez E, de Andrés J, Manrique M, et al. Metagenomic analysis of milk of healthy and mastitis-suffering women. J Hum Lact. 2015;31:406–15. https://doi.org/10.1177/0890334415585078.

    Article  PubMed  Google Scholar 

  42. Albesharat R, Ehrmann MA, Korakli M, et al. Phenotypic and genotypic analyses of lactic acid bacteria in local fermented food, breast milk and faeces of mothers and their babies. Syst Appl Microbiol. 2011;34:148–55. https://doi.org/10.1016/j.syapm.2010.12.001.

    Article  CAS  PubMed  Google Scholar 

  43. Pärnänen K, Karkman A, Hultman J, et al. Maternal gut and breast milk microbiota affect infant gut antibiotic resistome and mobile genetic elements. Nat Commun. 2018;9:3891. https://doi.org/10.1038/s41467-018-06393-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Ward TL, Hosid S, Ioshikhes I, Altosaar I. Human milk metagenome: a functional capacity analysis. BMC Microbiol. 2013;13

    Google Scholar 

  45. Murphy K, Curley D, O’callaghan TF, et al. The composition of human milk and infant faecal microbiota over the first three months of life: a pilot study. Sci Rep. 2017;7 https://doi.org/10.1038/srep40597.

  46. Biagi E, Quercia S, Aceti A, et al. The bacterial ecosystem of mother’s milk and infant’s mouth and gut. Front Microbiol. 2017;8 https://doi.org/10.3389/fmicb.2017.01214.

  47. Jost T, Lacroix C, Braegger CP, et al. Vertical mother-neonate transfer of maternal gut bacteria via breastfeeding. Environ Microbiol. 2014;16:2891–904. https://doi.org/10.1111/1462-2920.12238.

    Article  CAS  PubMed  Google Scholar 

  48. Togo A, Dufour J-C, Lagier J-C, et al. Repertoire of human breast and milk microbiota: a systematic review. Future Microbiol. 2019;14:623–41. https://doi.org/10.2217/fmb-2018-0317.

    Article  CAS  PubMed  Google Scholar 

  49. LaTuga MS, Stuebe A, Seed PC. A review of the source and function of microbiota in breast milk. Semin Reprod Med. 2014;32:68–73.

    Article  PubMed  Google Scholar 

  50. Moubareck CA. Human milk microbiota and oligosaccharides: a glimpse into benefits, diversity and correlations. Nutrients. 2021;13 https://doi.org/10.3390/nu13041123.

  51. Fitzstevens JL, Smith KC, Hagadorn JI, et al. Systematic review of the human milk microbiota. Nutr Clin Pract. 2017;32:354–64.

    Article  PubMed  Google Scholar 

  52. Mohandas S, Pannaraj PS (2020) Beyond the bacterial microbiome: virome of human milk and effects on the developing infant, pp. 86–93.

    Google Scholar 

  53. Pannaraj PS, Ly M, Cerini C, et al. Shared and distinct features of human milk and infant stool viromes. Front Microbiol. 2018;9 https://doi.org/10.3389/fmicb.2018.01162.

  54. Stinson LF, Sindi ASM, Cheema AS, et al. The human milk microbiome: who, what, when, where, why, and how? Nutr Rev. 2021;79:529–43. https://doi.org/10.1093/nutrit/nuaa029.

    Article  PubMed  Google Scholar 

  55. Boix-Amorós A, Puente-Sánchez F, du Toit E, et al. Mycobiome profiles in breast Milk from healthy women depend on mode of delivery, geographic location, and interaction with bacteria. Appl Environ Microbiol. 2019;85:e02994.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Thauer RK, Kaster AK, Seedorf H, et al. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol. 2008;6:579–91.

    Article  CAS  PubMed  Google Scholar 

  57. Samuel BS, Gordon JI. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA. 2006;103:10,011–6.

    Article  CAS  Google Scholar 

  58. Million M, Angelakis E, Maraninchi M, et al. Correlation between body mass index and gut concentrations of lactobacillus reuteri, Bifidobacterium animalis, Methanobrevibacter smithii and Escherichia coli. Int J Obes. 2013;37:1460–6. https://doi.org/10.1038/ijo.2013.20.

    Article  CAS  Google Scholar 

  59. Ignacio A, Fernandes MR, Rodrigues VAA, et al. Correlation between body mass index and faecal microbiota from children. Clin Microbiol Infect. 2016;22:258.e1–8. https://doi.org/10.1016/j.cmi.2015.10.031.

    Article  CAS  PubMed  Google Scholar 

  60. Togo AH, Grine G, Khelaifia S, et al. Culture of methanogenic archaea from human colostrum and Milk. Sci Rep. 2019;9:18653. https://doi.org/10.1038/s41598-019-54759-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fernández L, Langa S, Martín V, et al. The human milk microbiota: origin and potential roles in health and disease. Pharmacol Res. 2013;69:1–10.

    Article  PubMed  Google Scholar 

  62. Jeurink P, van Bergenhenegouwen J, Jiménez E, et al. Human milk: a source of more life than we imagine. Benef Microbes. 2013;4:17–30. https://doi.org/10.3920/BM2012.0040.

    Article  CAS  PubMed  Google Scholar 

  63. Gomez-Gallego C, Garcia-Mantrana I, Salminen S, Collado MC. The human milk microbiome and factors influencing its composition and activity. Semin Fetal Neonatal Med. 2016;21:400–5.

    Article  PubMed  Google Scholar 

  64. Urbaniak C, Angelini M, Gloor GB, Reid G. Human milk microbiota profiles in relation to birthing method, gestation and infant gender. Microbiome. 2016;4:1. https://doi.org/10.1186/s40168-015-0145-y.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Williams JE, Carrothers JM, Lackey KA, et al. Human Milk microbial community structure is relatively stable and related to variations in macronutrient and micronutrient intakes in healthy lactating women. J Nutr. 2017;147:1739–48. https://doi.org/10.3945/jn.117.248864.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lyons KE, O’Shea C-A, Grimaud G, et al. The human milk microbiome aligns with lactation stage and not birth mode. Sci Rep. 2022;12:5598. https://doi.org/10.1038/s41598-022-09009-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Cabrera-Rubio R, Mira-Pascual L, Mira A, Collado MC. Impact of mode of delivery on the milk microbiota composition of healthy women. J Dev Orig Health Dis. 2016;7:54–60. https://doi.org/10.1017/S2040174415001397.

    Article  CAS  PubMed  Google Scholar 

  68. Soto A, Martín V, Jiménez E, et al. Lactobacilli and bifidobacteria in human breast milk: influence of antibiotherapy and other host and clinical factors. J Pediatr Gastroenterol Nutr. 2014;59:78–88. https://doi.org/10.1097/MPG.0000000000000347.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Hoashi M, Meche L, Mahal LK, et al. Human milk bacterial and glycosylation patterns differ by delivery mode. Reprod Sci. 2016;23:902–7. https://doi.org/10.1177/1933719115623645.

    Article  CAS  PubMed  Google Scholar 

  70. Hermansson H, Kumar H, Collado MC, et al. Breast milk microbiota is shaped by mode of delivery and intrapartum antibiotic exposure. Front Nutr. 2019;6 https://doi.org/10.3389/fnut.2019.00004.

  71. Toscano M, de Grandi R, Peroni DG, et al. Impact of delivery mode on the colostrum microbiota composition. BMC Microbiol. 2017;17:205. https://doi.org/10.1186/s12866-017-1109-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Dinleyici M, Pérez-Brocal V, Arslanoglu S, et al. Article human milk virome analysis: changing pattern regarding mode of delivery, birth weight, and lactational stage. Nutrients. 2021;13 https://doi.org/10.3390/nu13061779.

  73. Dinleyici M, Pérez-Brocal V, Arslanoglu S, et al. Human milk mycobiota composition: relationship with gestational age, delivery mode, and birth weight. Benef Microbes. 2020;11:151–62. https://doi.org/10.3920/BM2019.0158.

    Article  CAS  PubMed  Google Scholar 

  74. Asbury MR, Butcher J, Copeland JK, et al. Mothers of preterm infants have individualized breast Milk microbiota that changes temporally based on maternal characteristics. Cell Host Microbe. 2020;28:669–682.e4. https://doi.org/10.1016/j.chom.2020.08.001.

    Article  CAS  PubMed  Google Scholar 

  75. Ballard O, Morrow AL. Human milk composition. Nutrients and bioactive factors. Pediatr Clin N Am. 2013;60:49–74.

    Article  Google Scholar 

  76. Munblit D, Treneva M, Peroni DG, et al. Colostrum and mature human milk of women from London, Moscow, and Verona: determinants of immune composition. Nutrients. 2016;8 https://doi.org/10.3390/nu8110695.

  77. Akhter H, Aziz F, Ullah FR, et al. Immunoglobulins content in colostrum, transitional and mature milk of Bangladeshi mothers: influence of parity and sociodemographic characteristics. J Mother Child. 2021;24:8–15. https://doi.org/10.34763/jmotherandchild.20202403.2032.d-20-00001.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Morera Pons S, Castellote Bargalló A, Campoy Folgoso C, López Sabater M. Triacylglycerol composition in colostrum, transitional and mature human milk. Eur J Clin Nutr. 2000;54:878–82. https://doi.org/10.1038/sj.ejcn.1601096.

    Article  Google Scholar 

  79. Samuel TM, Zhou Q, Giuffrida F, et al. Nutritional and non-nutritional composition of human milk is modulated by maternal, infant, and methodological factors. Front Nutr. 2020;7 https://doi.org/10.3389/fnut.2020.576133.

  80. Gila-Diaz A, Arribas SM, Algara A, et al. A review of bioactive factors in human breastmilk: a focus on prematurity. Nutrients. 2019;11:1307. https://doi.org/10.3390/nu11061307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Vass RA, Kemeny A, Dergez T, et al. Distribution of bioactive factors in human milk samples. Int Breastfeed J. 2019;14:9. https://doi.org/10.1186/s13006-019-0203-3.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Sinkiewicz-Darol E, Martysiak-Żurowska D, Puta M, et al. Nutrients and bioactive components of human milk after one year of lactation: implication for human milk banks. J Pediatr Gastroenterol Nutr. 2022;74:284–91. https://doi.org/10.1097/MPG.0000000000003298.

    Article  CAS  PubMed  Google Scholar 

  83. Drago L, Toscano M, de Grandi R, et al. Microbiota network and mathematic microbe mutualism in colostrum and mature milk collected in two different geographic areas: Italy versus Burundi. ISME J. 2017;11:875–84. https://doi.org/10.1038/ismej.2016.183.

    Article  CAS  PubMed  Google Scholar 

  84. Hunt KM, Foster JA, Forney LJ, et al. Characterization of the diversity and temporal stability of bacterial communities in human milk. PLoS One. 2011;6:e21313. https://doi.org/10.1371/journal.pone.0021313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Sakwinska O, Moine D, Delley M, et al. Microbiota in breast milk of Chinese lactating mothers. PLoS One. 2016;11:e0160856. https://doi.org/10.1371/journal.pone.0160856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Wan Y, Jiang J, Lu M, et al. Human milk microbiota development during lactation and its relation to maternal geographic location and gestational hypertensive status. Gut Microbes. 2020;11:1438–49. https://doi.org/10.1080/19490976.2020.1760711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Collado MC, Cernada M, Baüerl C, et al. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes. 2012;3:352.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Olivares M, Albrecht S, de Palma G, et al. Human milk composition differs in healthy mothers and mothers with celiac disease. Eur J Nutr. 2015;54:119–28. https://doi.org/10.1007/s00394-014-0692-1.

    Article  CAS  PubMed  Google Scholar 

  89. Turnbaugh PJ, Ley RE, Mahowald MA, et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444:1027–31. https://doi.org/10.1038/nature05414.

    Article  PubMed  Google Scholar 

  90. Collado MC, Isolauri E, Laitinen K, Salminen S. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women. Am J Clin Nutr. 2008;88:894–9. https://doi.org/10.1093/ajcn/88.4.894.

    Article  CAS  PubMed  Google Scholar 

  91. Cortés-Macías E, Selma-Royo M, Martínez-Costa C, Collado MC. Breastfeeding practices influence the breast milk microbiota depending on pre-gestational maternal bmi and weight gain over pregnancy. Nutrients. 2021;13 https://doi.org/10.3390/nu13051518.

  92. Olshan KL, Zomorrodi AR, Pujolassos M, et al. Microbiota and metabolomic patterns in the breast milk of subjects with celiac disease on a gluten-free diet. Nutrients. 2021;13 https://doi.org/10.3390/nu13072243.

  93. Bajer L, Kverka M, Kostovcik M, et al. Distinct gut microbiota profiles in patients with primary sclerosing cholangitis and ulcerative colitis. World J Gastroenterol. 2017;23:4548–58. https://doi.org/10.3748/wjg.v23.i25.4548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Sokol H, Seksik P, Furet JP, et al. Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis. 2009;15:1183–9. https://doi.org/10.1002/ibd.20903.

    Article  CAS  PubMed  Google Scholar 

  95. Benítez-Páez A, Olivares M, Szajewska H, et al. Breast-milk microbiota linked to celiac disease development in children: a pilot study from the PreventCD cohort. Front Microbiol. 2020;11 https://doi.org/10.3389/fmicb.2020.01335.

  96. Browne PD, Aparicio M, Alba C, et al. Human milk microbiome and maternal postnatal psychosocial distress. Front Microbiol. 2019;10 https://doi.org/10.3389/fmicb.2019.02333.

  97. Kumar H, du Toit E, Kulkarni A, et al. Distinct patterns in human milk microbiota and fatty acid profiles across specific geographic locations. Front Microbiol. 2016;7 https://doi.org/10.3389/fmicb.2016.01619.

  98. Lackey KA, Williams JE, Meehan CL, et al. What’s normal? Microbiomes in human milk and infant feces are related to each other but vary geographically: the inspire study. Front Nutr. 2019;6 https://doi.org/10.3389/fnut.2019.00045.

  99. Chen PW, Lin YL, Huang MS. Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J Food Drug Anal. 2018;26:1235–44. https://doi.org/10.1016/j.jfda.2018.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Barker DJP. Fetal origins of coronary heart disease. BMJ. 1995;311:171–4. https://doi.org/10.1136/bmj.311.6998.171.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Franks PW, Hanson RL, Knowler WC, et al. Childhood obesity, other cardiovascular risk factors, and premature death. N Engl J Med. 2010;362:485–93. https://doi.org/10.1056/NEJMoa0904130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Kalliomäki M, Carmen Collado M, Salminen S, Isolauri E. Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr. 2008;87:534–8. https://doi.org/10.1093/ajcn/87.3.534.

    Article  PubMed  Google Scholar 

  103. Luoto R, Kalliomäki M, Laitinen K, Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years. Int J Obes. 2010;34:1531–7. https://doi.org/10.1038/ijo.2010.50.

    Article  CAS  Google Scholar 

  104. Hou YP, He QQ, Ouyang HM, et al. Human gut microbiota associated with obesity in Chinese children and adolescents. Biomed Res Int. 2017;2017:1. https://doi.org/10.1155/2017/7585989.

    Article  CAS  Google Scholar 

  105. Liang C, Guo M, Liu T, et al. Profiles of gut microbiota in children with obesity from Harbin, China and screening of strains with anti-obesity ability in vitro and in vivo. J Appl Microbiol. 2020;129:728–37. https://doi.org/10.1111/jam.14639.

    Article  CAS  PubMed  Google Scholar 

  106. Abrahamsson TR, Sinkiewicz G, Jakobsson T, et al. Probiotic lactobacilli in breast milk and infant stool in relation to Oral intake during the first year of life. J Pediatr Gastroenterol Nutr. 2009;49:349–54.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Erişir Oygucu, S., Bekem, Ö. (2023). Microbiota Composition of Breast Milk. In: Şahin, Ö.N., Briana, D.D., Di Renzo, G.C. (eds) Breastfeeding and Metabolic Programming. Springer, Cham. https://doi.org/10.1007/978-3-031-33278-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-33278-4_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-33277-7

  • Online ISBN: 978-3-031-33278-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics