Skip to main content

Modeling and Surface Modification of AISI 321 Stainless Steel by Nanosecond Laser Radiation

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing VI (DSMIE 2023)

Abstract

Increasing the hydrophobicity of technological surfaces in terms of sustained economic growth is a priority for developing mechanical engineering quality, including green energy. The use of methods of laser action on the surfaces of metals makes it possible to increase the efficiency of such surfaces, providing the conditions for reducing the coefficient of friction and the hydrodynamic resistance during the flow of processing fluid to modernize hydraulic turbines and other things effectively. The paper considers issues related to forming the AISI 321 steel surface structure after exposure to nanosecond laser radiation. It describes the main features of the energy impact on the sample to obtain a hydrophilic and superhydrophobic surface. Based on the proposed methodology, an experimental study was carried out, and definitions were made of the primary indicators that determine the efficiency of the energy impact on the working environment and the formation of sandwich structures. A reasonable estimation of the laser radiation efficiency is given while forming the sample’s surface structure. It allows correcting rational modes for creating a surface with desired properties to provide the highest hydrophobicity and hydrophilicity. A new mechanism for the formation of surface superhydrophobicity is proposed and discussed. The practical value of the study is in the study of ways to improve the efficiency of surfaces by possibly intensifying their hydrophilic and superhydrophobic characteristics after energy exposure to a nanosecond laser.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chelabi, M.A., Saga, M., Kuric, I., et al.: The effect of blade angle deviation on mixed inflow turbine performances. Appl. Sci. (Switzerland) 12(8), 3781 (2022). https://doi.org/10.3390/app12083781

    Article  Google Scholar 

  2. Kim, B.–C., Lim, D.–W., Kim, G.–H., Lee, H.–T.: Superhydrophobicity and corrosion resistance of AISI 4140 mold made through nanosecond laser texturing. Int. J. Adv. Manuf. Technol. 119, 5119–5130 (2022). https://doi.org/10.1007/s00170-021-08479-0

  3. Gupta, R.K., et al.: Effect of pulsed laser deposition of thin surface film of 316 L stainless steel on corrosion behaviour of mild steel. Lasers Manuf. Mat. Process. 8(3), 312–324 (2021). https://doi.org/10.1007/s40516-021-00149-z

    Article  Google Scholar 

  4. Netprasert, O., Tangwarodomnukun, V., Dumkum, C.: Surface hardening of AISI 420 stainless steel by using a nanosecond pulse laser. In: 8th International Conference on Manufacturing Science and Technology, ICMST 2017, pp. 44–48. Materials Science Forum 911 MSF, Hong Kong (2021). https://doi.org/10.4028/www.scientific.net/MSF.911.44

  5. Fiorucci, M.P., López, A.J., Ramil, A.: Comparative study of surface structuring of biometals by UV nanosecond Nd:YVO4 laser. Int. J. Adv. Manuf. Technol. 75(1–4), 515–521 (2014). https://doi.org/10.1007/s00170-014-6164-1

    Article  Google Scholar 

  6. Cao, L., Jones, A.K., Sikka, V.K., et al.: Anti-Icing Superhydrophobic coatings. Langmuir 25(21), 12444–12448 (2009). https://doi.org/10.1021/la902882b

    Article  Google Scholar 

  7. Gelest. Hydrophobicity, Hydrophilicity, and Silane Surface Modification. https://technical.gelest.com. Accessed 07 Apr 2022

  8. Gaddam, A., Sharma, H., Karkantonis, T., Dimov, S.: Anti–icing properties of femtosecond laser–induced nano and multiscale topographies. Appl. Surf. Sci. 552, 149443 (2021). https://doi.org/10.1016/j.apsusc.2021.149443

    Article  Google Scholar 

  9. Gregorčič, P., Šetina-Batič, B., Hočevar, M.: Controlling the stainless steel surface wettability by nanosecond direct laser texturing at high fluences. Appl. Phys. A 123(12), 1–8 (2017). https://doi.org/10.1007/s00339-017-1392-5

    Article  Google Scholar 

  10. Cai, Y., et al.: A sequential process for manufacturing nature-inspired anisotropic superhydrophobic structures on AISI 316L stainless steel. Nanomanuf. Metrol. 2(3), 148–159 (2019). https://doi.org/10.1007/s41871-019-00046-2

    Article  Google Scholar 

  11. Sen, A., Doloi, B., Bhattacharyya, B.: Analysis of fiber laser micro-grooving on 316 L stainless steel. In: Shunmugam, M.S., Kanthababu, M. (eds.) Advances in Micro and Nano Manufacturing and Surface Engineering. LNMIE, pp. 225–235. Springer, Singapore (2019). https://doi.org/10.1007/978-981-32-9425-7_19

    Chapter  Google Scholar 

  12. Vercillo, V., Tonnicchia, S., Romano, J.-M., et al.: Design rules for laser-treated icephobic metallic surfaces for aeronautic applications. Adv. Func. Mater. 30(16), 1910268 (2020). https://doi.org/10.1002/adfm.201910268

    Article  Google Scholar 

  13. Volpe, A., Gaudiuso, C., Di Venere, L., Licciulli, F., Giordano, F., Ancona, A.: Direct femtosecond laser fabrication of superhydrophobic aluminum alloy surfaces with anti–icing properties. Coatings 10, 587 (2020). https://doi.org/10.3390/coatings10060587

    Article  Google Scholar 

  14. Genna, S., Giannini, O., Guarino, et al.: Laser texturing of AISI 304 stainless steel: experimental analysis and genetic algorithm optimisation to control the surface wettability. Int. J. Adv. Manuf. Technol. 110(11–12), 3005–3022 (2020). https://doi.org/10.1007/s00170-020-06073-4

  15. Kaewsaard, P., Zhu, H., Qi, H., Tangwarodomnukun, V.: Laser surface masking of stainless steel for electrochemical machining process. Int. J. Adv. Manuf. Technol. 116(3–4), 1141–1150 (2021). https://doi.org/10.1007/s00170-021-07465-w

    Article  Google Scholar 

  16. Conradi, M., Drnovšek, A., Gregorčič, P.: Wettability and friction control of a stainless steel surface by combining nanosecond laser texturing and adsorption of superhydrophobic nanosilica particles. Sci. Rep. 8(1), 7457 (2018). https://doi.org/10.1038/s41598-018-25850-6

    Article  Google Scholar 

  17. Lickschat, P., Metzner, D., Weißmantel, S.: Fundamental investigations of ultrashort pulsed laser ablation on stainless steel and cemented tungsten carbide. Int. J. Adv. Manuf. Technol. 109(3–4), 1167–1175 (2020). https://doi.org/10.1007/s00170-020-05502-8

    Article  Google Scholar 

  18. Gupta, R.K., et al.: Comparison of stress corrosion cracking susceptibility of laser machined and milled 304 L stainless steel. Lasers Manuf. Mat. Proc. 3(4), 191–203 (2016). https://doi.org/10.1007/s40516-016-0030-y

    Article  Google Scholar 

  19. Yang, L., Deng, Z., He, B., Özel, T.: An experimental investigation on laser surface texturing of AISI D2 tool steel using nanosecond fiber laser. Lasers Manuf. Materials Process. 8(2), 140–156 (2021). https://doi.org/10.1007/s40516-021-00144-4

    Article  Google Scholar 

  20. Ivanov, V., Dehtiarov, I., Pavlenko, I., Kosov, I., Kosov, M.: Technology for complex parts machining in multiproduct manufacturing. Manag. Prod. Eng. Rev. 10(2), 25–36 (2019). https://doi.org/10.24425/mper.2019.129566

    Article  Google Scholar 

  21. Simões, J.G.A.B., Riva, R., Miyakaw, W.: High–speed Laser-Induced Periodic Surface Structures (LIPSS) generation on stainless steel surface using a nanosecond pulsed laser. Surf. Coat. Technol. 344, 423–432 (2018). https://doi.org/10.1016/j.surfcoat.2018.03.052

    Article  Google Scholar 

  22. Hovorun, T.P., et al.: Physical-mechanical properties and structural-phase state of nanostructured wear-resistant coatings based on nitrides of refractory metals Ti and Zr. Funct. Mat. 26(3), 548–555 (2019). https://doi.org/10.15407/fm26.03.548

    Article  Google Scholar 

  23. Boamah, M.D., Lozier, E.H., Kim, J., et. al: Energy conversion via metal nanolayers. Proc. Natl. Acad. Sci. U. S. A. 116(33), 16210–16215 (2019). https://doi.org/10.1073/pnas.1906601116

  24. Li, X., Bista, P., Stetten, A.Z., et al.: Spontaneous charging affects the motion of sliding drops. Nat. Phys. 18(6), 713–719 (2022). https://doi.org/10.1038/s41567-022-01563-6

    Article  Google Scholar 

  25. Dobrotvorskiy, S., Basova, Y., Dobrovolska, L., Popov, V., Mounif, A.S.Y.: Creation of a Superhydrophilic Surface with Anti–icing Properties for X18H10T Stainless Steel Using a Nanosecond Laser. In: Cioboată, D.D. (eds) International Conference on Reliable Systems Engineering (ICoRSE) – 2022. ICoRSE 2022. Lecture Notes in Networks and Systems, vol. 534, pp. 172–184. Springer, Cham (2023). https://doi.org/10.1007/978-3-031-15944-2_17

  26. Antoszewski, B., Tofil, S., Scendo, M., Tarelnik, W.: Utilization of the UV laser with picosecond pulses for the formation of surface microstructures on elastomeric plastics. IOP Conf. Ser. Mat. Sci. Eng. 233(1), 012036 (2017). https://doi.org/10.1088/1757-899X/233/1/012036

    Article  Google Scholar 

  27. Kulesh, E.A., Piliptsou, D.G., Rogachev, A.V., Hong, J.X., Fedosenko, N.N., Kolesnyk, V.: Boron-carbon coatings: structure, morphology and mechanical properties. J. Eng. Sci. 7(2), C1–C9 (2020). https://doi.org/10.21272/jes.2020.7(2).c1

    Article  Google Scholar 

  28. Ivanov, Y., Klopotov, A.A., Petrikova, E.A., et al.: Structure and properties of the surface of high–chromium steels modified with an intense pulsed electron beam Lzvestiya. Ferrous Metallurgy 60(10), 839–845 (2017). https://doi.org/10.17073/0368-0797-2017-10-839-845

    Article  Google Scholar 

Download references

Acknowledgment

The results were partially obtained within the project “Development of a methodology for optimal design and manufacture of highly efficient, highly reliable turbomachines, taking into account various operating modes” (State Reg. No. 0121U107511).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Dobrotvorskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dobrotvorskiy, S., Aleksenko, B.A., Kościński, M., Basova, Y., Prykhodko, V. (2023). Modeling and Surface Modification of AISI 321 Stainless Steel by Nanosecond Laser Radiation. In: Ivanov, V., Trojanowska, J., Pavlenko, I., Rauch, E., Piteľ, J. (eds) Advances in Design, Simulation and Manufacturing VI. DSMIE 2023. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-031-32767-4_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32767-4_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32766-7

  • Online ISBN: 978-3-031-32767-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics