Skip to main content

Monoidal Strengthening of Simple \(\mathcal {V}\)-Polyhedral Disjunctive Cuts

  • Conference paper
  • First Online:
Integer Programming and Combinatorial Optimization (IPCO 2023)

Abstract

Disjunctive cutting planes can tighten a relaxation of a mixed-integer linear program. Traditionally, such cuts are obtained by solving a higher-dimensional linear program, whose additional variables cause the procedure to be computationally prohibitive. Adopting a \(\mathcal {V}\)-polyhedral perspective is a practical alternative that enables the separation of disjunctive cuts via a linear program with only as many variables as the original problem. The drawback is that the classical approach of monoidal strengthening cannot be directly employed without the values of the extra variables appearing in the extended formulation. We derive how to compute these values from a solution to the linear program generating \(\mathcal {V}\)-polyhedral disjunctive cuts. We then present computational experiments with monoidal strengthening of cuts from disjunctions with as many as 64 terms. Some instances are dramatically impacted, with strengthening increasing the gap closed by the cuts from 0 to 100%. However, for larger disjunctions, monoidal strengthening appears to be less effective, for which we identify a potential cause.

E. Balas passed away during the preparation of this manuscript, which started when both authors were at Carnegie Mellon University. The core ideas and early results are documented in the PhD dissertation of Kazachkov [37, Chapter 5]. A.M. Kazachkov completed the computational experiments, analysis, and writing independently.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. COIN-OR Branch and Cut. https://github.com/coin-or/Cbc

  2. COIN-OR Cut Generation Library. https://github.com/coin-or/Cgl

  3. COIN-OR Linear Programming. https://github.com/coin-or/Clp

  4. Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34(4), 361–372 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andersen, K., Cornuéjols, G., Li, Y.: Split closure and intersection cuts. Math. Program., 102(3, Ser. A), 457–493 (2005)

    Google Scholar 

  6. Balas, E., Qualizza, A.: Monoidal cut strengthening revisited. Discrete Optim. 9(1), 40–49 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Balas, E.: Intersection cuts–a new type of cutting planes for integer programming. Oper. Res. 19(1), 19–39 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  8. Balas, E.: Disjunctive programming. Ann. Discrete Math. 5, 3–51 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  9. Balas, E., Jeroslow, R.G.: Strengthening cuts for mixed integer programs. Eur. J. Oper. Res. 4(4), 224–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  10. Balas, E., Kazachkov, A.M.: \(\cal{V} \)-polyhedral disjunctive cuts (2022). https://arxiv.org/abs/2207.13619

  11. Balas, E., Kis, T.: On the relationship between standard intersection cuts, lift-and-project cuts and generalized intersection cuts. Math. Program., 1–30 (2016)

    Google Scholar 

  12. Balas, E., Perregaard, M.: A precise correspondence between lift-and-project cuts, simple disjunctive cuts, and mixed integer Gomory cuts for \(0\)-\(1\) programming. Math. Program. 94(2–3, Ser. B), 221–245 (2003). The Aussois 2000 Workshop in Combinatorial Optimization

    Google Scholar 

  13. Balas, E., Qualizza, A.: Intersection cuts from multiple rows: a disjunctive programming approach. EURO J. Computat. Optim. 1(1), 3–49 (2013)

    Article  MATH  Google Scholar 

  14. Balas, E., Ceria, S., Cornuéjols, G.: A lift-and-project cutting plane algorithm for mixed \(0\)-\(1\) programs. Math. Program. 58(3, Ser. A), 295–324 (1993)

    Google Scholar 

  15. Balas, E., Ceria, S., Cornuéjols, G.: Mixed \(0\)-\(1\) programming by lift-and-project in a branch-and-cut framework. Man. Sci. 42(9), 1229–1246 (1996)

    Article  MATH  Google Scholar 

  16. Basu, A., Bonami, P., Cornuéjols, G., Margot, F.: Experiments with two-row cuts from degenerate tableaux. INFORMS J. Comput. 23(4), 578–590 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bixby, R.E., Boyd, E.A., Indovina, R.R.: MIPLIB: a test set of mixed integer programming problems. SIAM News 25, 16 (1992)

    Google Scholar 

  18. Bixby, R.E., Ceria, S., McZeal, C.M., Savelsbergh, M.W.P.: An updated mixed integer programming library: MIPLIB 3.0. Optima, 58, 12–15, 6 (1998)

    Google Scholar 

  19. Bonami, P.: On optimizing over lift-and-project closures. Math. Program. Comput. 4(2), 151–179 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Bonami, P., Conforti, M., Cornuéjols, G., Molinaro, M., Zambelli, G.: Cutting planes from two-term disjunctions. Oper. Res. Lett. 41(5), 442–444 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Conforti, M., Cornuéjols, G., Zambelli, G.: Integer Programming, vol. 271 of Graduate Texts in Mathematics. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11008-0

  22. CORAL. Computational Optimization Research at Lehigh. MIP instances. https://coral.ise.lehigh.edu/data-sets/mixed-integer-instances/ (2020). Accessed Sept 2020

  23. Cornuéjols, G., Li, Y.: Elementary closures for integer programs. Oper. Res. Lett. 28(1), 1–8 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dey, S.S., Wolsey, L.A.: Two row mixed-integer cuts via lifting. Math. Program. 124(1–2, Ser. B), 143–174 (2010)

    Google Scholar 

  25. Dey, S.S., Lodi, A., Tramontani, A., Wolsey, L.A.: On the practical strength of two-row tableau cuts. INFORMS J. Comput. 26(2), 222–237 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  26. Espinoza, D.G.: Computing with multi-row Gomory cuts. Oper. Res. Lett. 38(2), 115–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  27. Farkas, J.: Theorie der einfachen Ungleichungen. J. Reine Angew. Math. 124, 1–27 (1902)

    MathSciNet  MATH  Google Scholar 

  28. Fischer, T., Pfetsch, M.E.: Monoidal cut strengthening and generalized mixed-integer rounding for disjunctions and complementarity constraints. Oper. Res. Lett. 45(6), 556–560 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  29. Fischetti, M., Lodi, A., Tramontani, A.: On the separation of disjunctive cuts. Math. Program. 128(1–2, Ser. A), 205–230 (2011)

    Google Scholar 

  30. Fukasawa, R., Poirrier, L., Xavier, Á.S.: The (not so) trivial lifting in two dimensions. Math. Program. Comp. 11(2), 211–235 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  31. Gleixner, A., et al.: MIPLIB 2017: Data-Driven compilation of the 6th mixed-integer programming library. Math. Prog. Comp., (2021)

    Google Scholar 

  32. Gomory, R.E., Johnson, E.L.: Some continuous functions related to corner polyhedra. Math. Program. 3(1), 23–85 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  33. Guennebaud, G., et al.: Eigen v3. http://eigen.tuxfamily.org (2010)

  34. Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual (2022)

    Google Scholar 

  35. Johnson, E.L.: On the group problem for mixed integer programming. Math. Program. Stud. 2, 137–179 (1974)

    Article  MathSciNet  Google Scholar 

  36. Júdice, J.J., Sherali, H.D., Ribeiro, I.M., Faustino, A.M.: A complementarity-based partitioning and disjunctive cut algorithm for mathematical programming problems with equilibrium constraints. J. Global Optim. 36(1), 89–114 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Kazachkov, A.M.: Non-Recursive Cut Generation. PhD thesis, Carnegie Mellon University (2018)

    Google Scholar 

  38. Kazachkov, A.M., Serrano, F.: Monoidal cut strengthening. In: Prokopyev, O., Pardalos, P.M., editors, Encyclopedia of Optimization. Springer, US, Boston, MA. Under review

    Google Scholar 

  39. Kılınç, M., Linderoth, J., Luedtke, J., Miller, A.: Strong-branching inequalities for convex mixed integer nonlinear programs. Comput. Optim. Appl. 59(3), 639–665 (2014). https://doi.org/10.1007/s10589-014-9690-8

    Article  MathSciNet  MATH  Google Scholar 

  40. Kis, T.: Lift-and-project for general two-term disjunctions. Discrete Optim. 12, 98–114 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  41. Koch, T., Achterberg, T., Andersen, E., Bastert, O., Berthold, T., Bixby, R.E., et al.: MIPLIB 2010: mixed integer programming library version 5. Math. Program. Comput. 3(2), 103–163 (2011)

    Article  MathSciNet  Google Scholar 

  42. Kronqvist, J., Misener, R.: A disjunctive cut strengthening technique for convex MINLP. Optim. Eng. 22(3), 1315–1345 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  43. Lougee-Heimer, R.: The Common Optimization INterface for Operations Research: promoting open-source software in the operations research community. IBM J. Res. Dev. 47 (2003)

    Google Scholar 

  44. Louveaux, Q., Poirrier, L., Salvagnin, D.: The strength of multi-row models. Math. Program. Comput. 7(2), 113–148 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Nemhauser, G.L., Wolsey, L.A.: Integer and combinatorial optimization. Wiley-Interscience Series in Discrete Mathematics and Optimization. John Wiley & Sons Inc, New York (1988)

    Google Scholar 

  46. Nemhauser, G.L., Wolsey, L.A.: A recursive procedure to generate all cuts for \(0\)-\(1\) mixed integer programs. Math. Program. 46(1), 379–390 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  47. Perregaard, M.: Generating Disjunctive Cuts for Mixed Integer Programs. PhD thesis, Carnegie Mellon University, 9 (2003)

    Google Scholar 

  48. Perregaard, M., Balas, E.: Generating cuts from multiple-term disjunctions. In: Aardal, K., Gerards, B. (eds.) IPCO 2001. LNCS, vol. 2081, pp. 348–360. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45535-3_27

    Chapter  Google Scholar 

  49. Xavier, Á.S., Fukasawa, R., Poirrier, L.: Multirow intersection cuts based on the infinity norm. INFORMS J. Comput. 33(4), 1624–1643 (2021)

    MathSciNet  MATH  Google Scholar 

  50. Ziegler, G.M.: Lectures on Polytopes, vol. 152 of Graduate Texts in Mathematics. Springer-Verlag, New York (1995). https://doi.org/10.1007/978-1-4613-8431-1

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksandr M. Kazachkov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kazachkov, A.M., Balas, E. (2023). Monoidal Strengthening of Simple \(\mathcal {V}\)-Polyhedral Disjunctive Cuts. In: Del Pia, A., Kaibel, V. (eds) Integer Programming and Combinatorial Optimization. IPCO 2023. Lecture Notes in Computer Science, vol 13904. Springer, Cham. https://doi.org/10.1007/978-3-031-32726-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32726-1_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32725-4

  • Online ISBN: 978-3-031-32726-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics