Skip to main content

Optimizing Robot Positioning Accuracy with Kinematic Calibration and Deflection Estimation

  • Conference paper
  • First Online:
Advances in Service and Industrial Robotics (RAAD 2023)

Part of the book series: Mechanisms and Machine Science ((Mechan. Machine Science,volume 135))

Included in the following conference series:

  • 552 Accesses

Abstract

To achieve higher positioning accuracy, it is common practice to calibrate the robot. An essential part of the calibration is the estimation of the kinematic parameters. Due to various nonlinear influences on the end-effector position accuracy, such as joint and link flexibility, standard methods of identifying kinematic parameters do not always give a satisfactory result. In this paper, we propose a strategy that considers deflection-dependent errors to improve the overall positioning accuracy of the robot. As joint/link deflections mainly depend on gravity, we include the compensation of gravity-induced errors in the estimation procedure. In the first step of the proposed strategy, we compute the joint position errors caused by gravity. In the next step, we apply an existing optimization method to estimate the kinematic parameters. We propose to use an optimization based on random configurations. Such an approach allows good calibration even when we want to calibrate a robot in a bounded workspace. Since calibration is generally time consuming, we investigated how the number of measured configurations influences the calibration. To evaluate the proposed method, we used a simulation of the collaborative robot Franka Emika Panda in MuJoCo.

This work was supported by Slovenian Research Agency grant N2-0269 and P2-0076.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Zhang, Q., Sun, Y.: Non-kinematic calibration of industrial robots using a rigid-flexible coupling error model and a full pose measurement method. Robot. Comput.-Integr. Manuf. 57(November 2018), 46–58 (2019)

    Google Scholar 

  2. Elatta, A.Y., Gen, L.P., Zhi, F.L., Daoyuan, Y., Fei, L.: An overview of robot calibration. Inf. Technol. J. 3(1), 74–78 (2004)

    Google Scholar 

  3. Gadringer, S., Gattringer, H., Müller, A., Naderer, R.: Robot calibration combining kinematic model and neural network for enhanced positioning and orientation accuracy. IFAC-PapersOnLine 53(2), 8432–8437 (2020)

    Article  Google Scholar 

  4. Joubair, A., Bonev, I.A.: Non-kinematic calibration of a six-axis serial robot using planar constraints. Precis. Eng. 40, 325–333 (2015)

    Article  Google Scholar 

  5. Klimchik, A., Caro, S., Pashkevich, A.: Optimal pose selection for calibration of planar anthropomorphic manipulators. Precis. Eng. 40, 214–229 (2015)

    Article  Google Scholar 

  6. Li, K.L., Yang, W.T., Chan, K.Y., Lin, P.C.: An optimization technique for identifying robot manipulator parameters under uncertainty. Springerplus 5(1), 1–16 (2016). https://doi.org/10.1186/s40064-016-3417-5

    Article  Google Scholar 

  7. Ma, L., Bazzoli, P., Sammons, P.M., Landers, R.G., Bristow, D.A.: Modeling and calibration of high-order joint-dependent kinematic errors for industrial robots. Robot. Comput.-Integr. Manuf. 50(May 2017), 153–167 (2018)

    Google Scholar 

  8. Neubauer, M., Gattringer, H., Müller, A., Steinhauser, A., Höbarth, W.: A two-stage calibration method for industrial robots with joint and drive flexibilities. Mech. Sci. 6(2), 191–201 (2015). https://doi.org/10.5194/ms-6-191-2015

    Article  Google Scholar 

  9. Nubiola, A., Slamani, M., Bonev, I.A.: A new method for measuring a large set of poses with a single telescoping ballbar. Precis. Eng. 37(2), 451–460 (2013). https://doi.org/10.1016/j.precisioneng.2012.12.001

    Article  Google Scholar 

  10. Nubiola, A., Slamani, M., Joubair, A., Bonev, I.A.: Comparison of two calibration methods for a small industrial robot based on an optical CMM and a laser tracker. Robotica 32(3), 447–466 (2014). https://doi.org/10.1017/S0263574713000714

    Article  Google Scholar 

  11. Renders, J.M., Rossignol, E., Becquet, M., Hanus, R.: Kinematic calibration and geometrical parameter identification for robots. IEEE Trans. Robot. Autom. 7(6), 721–732 (1991)

    Article  Google Scholar 

  12. Roth, Z.S., Mooring, B.W., Ravani, B.: An overview of robot calibration. IEEE J. Robot. Autom. 3(5), 377–385 (1987)

    Article  Google Scholar 

  13. Švaco, M., Šekoranja, B., Šuligoj, F., Jerbić, B.: Calibration of an industrial robot using a stereo vision system. Procedia Eng. 69, 459–463 (2014). https://doi.org/10.1016/j.proeng.2014.03.012

    Article  Google Scholar 

  14. Vincze, M., Prenninger, J., Gander, H.: A laser tracking system to measure position and orientation of robot end effectors under motion. Int. J. Robot. Res. 13(4), 305–314 (1994). https://doi.org/10.1177/027836499401300402

    Article  Google Scholar 

  15. Wang, Z., Chen, Z., Wang, Y., Mao, C., Hang, Q.: A robot calibration method based on joint angle division and an artificial neural network. Math. Probl. Eng. 2019, 12, 9293484 (2019). https://doi.org/10.1155/2019/9293484

  16. Xu, W., Dongsheng, L., Mingming, W.: Complete calibration of industrial robot with limited parameters and neural network. In: IRIS 2016 - 2016 IEEE 4th International Symposium on Robotics and Intelligent Sensors: Empowering Robots with Smart Sensors, pp. 103–108 (2017)

    Google Scholar 

  17. Žlajpah, L., Petrič, T.: Kinematic calibration for collaborative robots on a mobile platform using motion capture system. Robot. Comput.-Integr. Manuf. 79, 102446 (2023)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tadej Petrič .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Žlajpah, L., Petrič, T. (2023). Optimizing Robot Positioning Accuracy with Kinematic Calibration and Deflection Estimation. In: Petrič, T., Ude, A., Žlajpah, L. (eds) Advances in Service and Industrial Robotics. RAAD 2023. Mechanisms and Machine Science, vol 135. Springer, Cham. https://doi.org/10.1007/978-3-031-32606-6_30

Download citation

Publish with us

Policies and ethics