Skip to main content

A New Model to Assess the Flexural Strength of Steel-Fiber Reinforced Concrete Sections

  • Conference paper
  • First Online:
Building for the Future: Durable, Sustainable, Resilient (fib Symposium 2023)

Abstract

Structural engineering requires approaches allowing engineers to do simple but reliable calculations. For this purpose, we present an analytical model to evaluate the flexural strength of steel-fiber reinforced concrete sections. The model studies the compressive and tensile sectional behaviors jointly. The tensile zone of the structural element is defined through a linear stress-crack opening softening law, and it is assumed to have a planar crack (the crack surfaces remain plane during the fracture process) as a compatibility equation. The new compressive stress-strain law included in Annex L of the new Eurocode 2 for steel-fiber reinforced concrete analysis describes the compressed zone together with the Bernoulli-Navier hypothesis. A brittleness number is defined, like Hillerborg’s brittleness number for plain concrete, which depends on the size and tensile softening characteristics. The results reveal that this brittleness number influences the flexural strength of steel-fiber reinforced concrete sections. Besides, the model reproduces the size effect and its asymptotic behavior, showing the actual response in flexion of the material. Thereby, the model may be helpful to engineers in designing structural sections of steel-fiber reinforced concrete simply and reliably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bazant Z (1984) Size effect in blunt fracture: Concrete, rock, metal. J Eng Mech 110(4):518–535

    Article  Google Scholar 

  2. Li V, Liang E (1986) Fracture processes in concrete and fiber-reinforced cementitious composites. ASCE J Eng Mech 122(6):566–586

    Article  Google Scholar 

  3. Shah S, Swartz S, Ouyang C (1995) Fracture mechanics of concrete: Applications of Fracture Mechanics to concrete, rock, and other quasi-brittle materials. Wiley, New York

    Google Scholar 

  4. Saucedo L, Yu R, Ruiz G (2012) Fully developed FPZ length in quasi-brittle materials. Int J Fract 178:97–112

    Article  Google Scholar 

  5. Carpinteri A, Chiaia B, Nemati K (1997) Complex fracture energy dissipation in concrete under different loading conditions. Mech Mater 26:93–108

    Article  Google Scholar 

  6. Pandolfi A, Conti S, Ortiz M (2006) A recursive-faulting model of distributed damage in confined brittle materials. J Mech Phys Solids 54(9):1972–2003

    Article  MathSciNet  MATH  Google Scholar 

  7. del Viso JR, Carmona JR, Ruiz G (2008) Shape and size effects on the compressive strength of high-strength concrete. Cem Concr Res 38(3):386–395

    Article  Google Scholar 

  8. Carmona JR, Cortés-Buitrago R, Rey-Rey J, Ruiz G (2022) Planar crack approach to evaluate the flexural strength of fiber-reinforced concrete sections. Materials 15:5821

    Article  Google Scholar 

  9. Carmona JR, Rey-Rey J, Ruiz G (2022) Examples of modeling of flexural behavior of fiber-reinforced concrete sections using the planar crack assumption. Hormigón y Acero 73(296):81–87

    Article  Google Scholar 

  10. fib Bulletins 65–66, Model Code 2010, Final Draft. International Federation for Structural Concrete, fib. Lausanne, Switzerland, 2012

    Google Scholar 

  11. Ruiz G, De La Rosa Á, Wolf S, Poveda E (2019) Model for the compressive stress-strain relationship of steel fiber-reinforced concrete for non-linear structural analysis. Hormigón y Acero 69(S1):75–80

    Google Scholar 

  12. Gali S, Subramaniam K (2017) Multi-linear stress-crack separation relationships for steel fiber reinforced concrete: analytical framework and experimental evaluation. Theoret Appl Fract Mech 93(S1):33–43

    Google Scholar 

  13. Carmona JR, Ruiz G (2017) Modelo analítico para el análisis de la flexion y la fisuración en secciones de hormigón armado como alternativa al diagrama de pivotes. Hormigón y Acero 68(282):147–154

    Article  Google Scholar 

  14. Oh B, Park D, Kim J, Choi Y (2005) Experimental and theoretical investigation on the postcracking inelastic behavior of synthetic fiber reinforced concrete beams. Cem Concr Res 35:384–392

    Article  Google Scholar 

  15. H. Tada, H. Paris, G. Irwin, The stress analysis of cracks handbook. Professional Engineering Publishing, 1973

    Google Scholar 

  16. Hillerborg A, Modéer M, Petersson P (1976) Analysis of crack formation and crack growth in concrete by means of Fracture Mechanics and finite elements. Cem Concr Res 6(6):773–781

    Article  Google Scholar 

  17. Planas J, Guinea G, Elices M (1995) Rupture modulus and fracture properties of concrete. In: 2nd International congress on fracture mechanics of concrete structures (FraMCoS-2), pp 95–110

    Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Science and Innovation (Spain) for financing PID2019-110928RB-C31 and RTC-2017-6736-3 projects and the Junta de Comunidades de Castilla-La Mancha (Spain) for the project SBPLY/19 /180501/000220.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ángel De La Rosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

De La Rosa, Á., Ruiz, G., Carmona, J.R. (2023). A New Model to Assess the Flexural Strength of Steel-Fiber Reinforced Concrete Sections. In: Ilki, A., Çavunt, D., Çavunt, Y.S. (eds) Building for the Future: Durable, Sustainable, Resilient. fib Symposium 2023. Lecture Notes in Civil Engineering, vol 350. Springer, Cham. https://doi.org/10.1007/978-3-031-32511-3_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32511-3_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32510-6

  • Online ISBN: 978-3-031-32511-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics