Skip to main content

Neuroimmunoregulation of Cancer: The Case for Multiple Myeloma

  • Chapter
  • First Online:
Cancer Neuroscience

Abstract

This chapter provides a discussion of the potential role of stress and neuroimmunoregulation on the progression of multiple myeloma. Several lines of evidence reveal a strong impact of stress in the progression of this disease. Moreover, research has shown the potential role of several types of nerve fibers in the bone marrow which can influence cancers in this site. This evidence has already led to the development of new clinical trials that evaluate the impact of antagonists for adrenergic receptor signaling (i.e., beta-blockers) on multiple myeloma progression and the immune microenvironment. New approaches using various pharmacological agents that target signaling through other types of nerve fibers as well as behavioral interventions to reduce stress appear strongly warranted in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Franklin, M. R.; Platero, S.; Saini, K. S.; Curigliano, G.; Anderson, S. Immuno-oncology trends: preclinical models, biomarkers, and clinical development. Journal for ImmunoTherapy of Cancer 2022, 10 (1).

    Google Scholar 

  2. Hiam-Galvez, K. J.; Allen, B. M.; Spitzer, M. H. Systemic immunity in cancer. Nature reviews cancer 2021, 21 (6), 345-359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dantzer, R.; Kelley, K. W. Stress and immunity: an integrated view of relationships between the brain and the immune system. Life sciences 1989, 44 (26), 1995-2008.

    Article  CAS  PubMed  Google Scholar 

  4. Yaman, I.; Çobanoğlu, D. A.; Xie, T.; Ye, Y.; Amit, M. Advances in understanding cancer-associated neurogenesis and its implications on the neuroimmune axis in cancer. Pharmacology & Therapeutics 2022, 108199.

    Google Scholar 

  5. Kiecolt-Glaser, J. K.; Glaser, R. Psychoneuroimmunology and cancer: fact or fiction? European Journal of Cancer 1999, 35 (11), 1603-1607.

    Article  CAS  PubMed  Google Scholar 

  6. Dhabhar, F. S. Acute stress enhances while chronic stress suppresses skin immunity: the role of stress hormones and leukocyte trafficking. Annals of the New York Academy of Sciences 2000, 917 (1), 876-893.

    Article  CAS  PubMed  Google Scholar 

  7. Borniger, J. C. Cancer as a tool for preclinical psychoneuroimmunology. Brain, Behavior, & Immunity-Health 2021, 18, 100351.

    Article  CAS  Google Scholar 

  8. McDonald, P. G.; O’Connell, M.; Lutgendorf, S. K. Psychoneuroimmunology and cancer: a decade of discovery, paradigm shifts, and methodological innovations. Brain, behavior, and immunity 2013, 30, S1-S9.

    Article  PubMed Central  Google Scholar 

  9. Todd, B. L.; Moskowitz, M. C.; Ottati, A.; Feuerstein, M. Stressors, stress response, and cancer recurrence: a systematic review. Cancer nursing 2014, 37 (2), 114-125.

    Article  PubMed  Google Scholar 

  10. Mravec, B.; Horvathova, L.; Hunakova, L. Neurobiology of Cancer: the Role of beta-Adrenergic Receptor Signaling in Various Tumor Environments. Int J Mol Sci 2020, 21 (21). DOI: https://doi.org/10.3390/ijms21217958.

  11. Thaker, P. H.; Lutgendorf, S. K.; Sood, A. K. The neuroendocrine impact of chronic stress on cancer. Cell Cycle 2007, 6 (4), 430-433. DOI: https://doi.org/10.4161/cc.6.4.3829.

    Article  CAS  PubMed  Google Scholar 

  12. Moreno-Smith, M.; Lutgendorf, S. K.; Sood, A. K. Impact of stress on cancer metastasis. Future Oncol 2010, 6 (12), 1863-1881. DOI: https://doi.org/10.2217/fon.10.142.

    Article  PubMed  Google Scholar 

  13. Hwa, Y. L.; Shi, Q.; Kumar, S. K.; Lacy, M. Q.; Gertz, M. A.; Kapoor, P.; Buadi, F. K.; Leung, N.; Dingli, D.; Go, R. S.; et al. Beta-blockers improve survival outcomes in patients with multiple myeloma: a retrospective evaluation. American Journal of Hematology 2017, 92 (1), 50–55, Article. DOI: https://doi.org/10.1002/ajh.24582.

  14. Servick, K. War of nerves. Science 2019, 365 (6458), 1071–1073. DOI: https://doi.org/10.1126/science.365.6458.1071.

    Article  CAS  PubMed  Google Scholar 

  15. Steptoe, A.; Willemsen, G.; Owen, N.; Flower, L.; Mohamed-Ali, V. Acute mental stress elicits delayed increases in circulating inflammatory cytokine levels. Clin Sci (Lond) 2001, 101 (2), 185–192.

    Article  CAS  PubMed  Google Scholar 

  16. Bierhaus, A.; Wolf, J.; Andrassy, M.; Rohleder, N.; Humpert, P. M.; Petrov, D.; Ferstl, R.; von Eynatten, M.; Wendt, T.; Rudofsky, G.; et al. A mechanism converting psychosocial stress into mononuclear cell activation. Proc Natl Acad Sci U S A 2003, 100 (4), 1920–1925. DOI: https://doi.org/10.1073/pnas.0438019100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qiao, G.; Chen, M.; Mohammadpour, H.; MacDonald, C. R.; Bucsek, M. J.; Hylander, B. L.; Barbi, J. J.; Repasky, E. A. Chronic Adrenergic Stress Contributes to Metabolic Dysfunction and an Exhausted Phenotype in T Cells in the Tumor Microenvironment. Cancer Immunol Res 2021, 9 (6), 651–664. DOI: https://doi.org/10.1158/2326-6066.CIR-20-0445.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Faulkner, S.; Jobling, P.; March, B.; Jiang, C. C.; Hondermarck, H. Tumor Neurobiology and the War of Nerves in Cancer. Cancer Discov 2019, 9 (6), 702–710. DOI: https://doi.org/10.1158/2159-8290.CD-18-1398.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X.; Zhang, Y.; He, Z.; Yin, K.; Li, B.; Zhang, L.; Xu, Z. Chronic stress promotes gastric cancer progression and metastasis: an essential role for ADRB2. Cell Death Dis 2019, 10 (11), 788. DOI: https://doi.org/10.1038/s41419-019-2030-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chhatar, S.; Lal, G. Role of adrenergic receptor signalling in neuroimmune communication. Current Research in Immunology 2021, 2, 202–217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Mohammadpour, H.; MacDonald, C. R.; Qiao, G.; Chen, M.; Dong, B.; Hylander, B. L.; McCarthy, P. L.; Abrams, S. I.; Repasky, E. A. β2 adrenergic receptor-mediated signaling regulates the immunosuppressive potential of myeloid-derived suppressor cells. J Clin Invest 2019, 129 (12), 5537–5552. DOI: https://doi.org/10.1172/jci129502 From NLM.

  22. Qiao, G.; Bucsek, M. J.; Winder, N. M.; Chen, M.; Giridharan, T.; Olejniczak, S. H.; Hylander, B. L.; Repasky, E. A. beta-Adrenergic signaling blocks murine CD8(+) T-cell metabolic reprogramming during activation: a mechanism for immunosuppression by adrenergic stress. Cancer Immunology Immunotherapy 2019, 68 (1), 11–22, Article. DOI: https://doi.org/10.1007/s00262-018-2243-8.

  23. Kokolus, K. M.; Zhang, Y.; Sivik, J. M.; Schmeck, C.; Zhu, J.; Repasky, E. A.; Drabick, J. J.; Schell, T. D. Beta blocker use correlates with better overall survival in metastatic melanoma patients and improves the efficacy of immunotherapies in mice. Oncoimmunology 2018, 7 (3), e1405205. DOI: https://doi.org/10.1080/2162402X.2017.1405205.

    Article  PubMed  Google Scholar 

  24. Hiller, J. G.; Cole, S. W.; Crone, E. M.; Byrne, D. J.; Shackleford, D. M.; Pang, J. B.; Henderson, M. A.; Nightingale, S. S.; Ho, K. M.; Myles, P. S.; et al. Preoperative beta-Blockade with Propranolol Reduces Biomarkers of Metastasis in Breast Cancer: A Phase II Randomized Trial. Clin Cancer Res 2020, 26 (8), 1803–1811. DOI: https://doi.org/10.1158/1078-0432.CCR-19-2641.

    Article  CAS  PubMed  Google Scholar 

  25. Conceicao, F.; Sousa, D. M.; Paredes, J.; Lamghari, M. Sympathetic activity in breast cancer and metastasis: partners in crime. Bone Res 2021, 9 (1), 9. DOI: https://doi.org/10.1038/s41413-021-00137-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. De Giorgi, V.; Grazzini, M.; Benemei, S.; Marchionni, N.; Geppetti, P.; Gandini, S. beta-Blocker use and reduced disease progression in patients with thick melanoma: 8 years of follow-up. Melanoma Res 2017, 27 (3), 268–270. DOI: https://doi.org/10.1097/CMR.0000000000000317.

    Article  CAS  PubMed  Google Scholar 

  27. De Giorgi, V.; Grazzini, M.; Benemei, S.; Marchionni, N.; Botteri, E.; Pennacchioli, E.; Geppetti, P.; Gandini, S. Propranolol for Off-label Treatment of Patients With Melanoma: Results From a Cohort Study. JAMA Oncol 2018, 4 (2), e172908. DOI: https://doi.org/10.1001/jamaoncol.2017.2908.

    Article  PubMed  Google Scholar 

  28. Sigorski, D.; Izycka-Swieszewska, E. Sympathetic nervous signaling dictates prostate cancer progression. Cell Death Discov 2022, 8 (1), 109. DOI: https://doi.org/10.1038/s41420-022-00928-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Bucsek, M. J.; Qiao, G.; MacDonald, C. R.; Giridharan, T.; Evans, L.; Niedzwecki, B.; Liu, H.; Kokolus, K. M.; Eng, J. W. L.; Messmer, M. N.; et al. beta-Adrenergic Signaling in Mice Housed at Standard Temperatures Suppresses an Effector Phenotype in CD8(+) T Cells and Undermines Checkpoint Inhibitor Therapy. Cancer Research 2017, 77 (20), 5639–5651, Article. DOI: https://doi.org/10.1158/0008-5472.Can-17-0546.

  30. Eng, J. W. L.; Reed, C. B.; Kokolus, K. M.; Pitoniak, R.; Utley, A.; Bucsek, M. J.; Ma, W. W.; Repasky, E. A.; Hylander, B. L. Housing temperature-induced stress drives therapeutic resistance in murine tumour models through beta(2)-adrenergic receptor activation. Nature Communications 2015, 6, Article. DOI: https://doi.org/10.1038/ncomms7426.

  31. Moretti, S.; Massi, D.; Farini, V.; Baroni, G.; Parri, M.; Innocenti, S.; Cecchi, R.; Chiarugi, P. β-adrenoceptors are upregulated in human melanoma and their activation releases pro-tumorigenic cytokines and metalloproteases in melanoma cell lines. Lab Invest 2013, 93 (3), 279–290. DOI: https://doi.org/10.1038/labinvest.2012.175 From NLM.

  32. Calvani, M.; Pelon, F.; Comito, G.; Taddei, M. L.; Moretti, S.; Innocenti, S.; Nassini, R.; Gerlini, G.; Borgognoni, L.; Bambi, F.; et al. Norepinephrine promotes tumor microenvironment reactivity through beta3-adrenoreceptors during melanoma progression. Oncotarget 2015, 6 (7), 4615–4632. DOI: https://doi.org/10.18632/oncotarget.2652.

    Article  PubMed  Google Scholar 

  33. Gandhi, S.; Pandey, M. R.; Attwood, K.; Ji, W.; Witkiewicz, A. K.; Knudsen, E. S.; Allen, C.; Tario, J. D.; Wallace, P. K.; Cedeno, C. D.; et al. Phase I Clinical Trial of Combination Propranolol and Pembrolizumab in Locally Advanced and Metastatic Melanoma: Safety, Tolerability, and Preliminary Evidence of Antitumor Activity. Clin Cancer Res 2020. DOI: https://doi.org/10.1158/1078-0432.CCR-20-2381.

  34. Gandhi, S.; Pandey, M. R.; Attwood, K.; Ji, W.; Witkiewicz, A. K.; Knudsen, E. S.; Allen, C.; Tario, J. D.; Wallace, P. K.; Cedeno, C. D. Phase I Clinical Trial of Combination Propranolol and Pembrolizumab in Locally Advanced and Metastatic Melanoma: Safety, Tolerability, and Preliminary Evidence of Antitumor ActivityPropranolol and Pembrolizumab in Metastatic Melanoma. Clinical Cancer Research 2021, 27 (1), 87–95.

    Article  CAS  PubMed  Google Scholar 

  35. Knight, J. M.; Rizzo, J. D.; Hari, P.; Pasquini, M. C.; Giles, K. E.; D’Souza, A.; Logan, B. R.; Hamadani, M.; Chhabra, S.; Dhakal, B.; et al. Propranolol inhibits molecular risk markers in HCT recipients: a phase 2 randomized controlled biomarker trial. Blood Advances 2020, 4 (3), 467–476, Article. DOI: https://doi.org/10.1182/bloodadvances.2019000765.

  36. Kumar, S. K.; Dispenzieri, A.; Lacy, M. Q.; Gertz, M. A.; Buadi, F. K.; Pandey, S.; Kapoor, P.; Dingli, D.; Hayman, S. R.; Leung, N.; et al. Continued improvement in survival in multiple myeloma: changes in early mortality and outcomes in older patients. Leukemia 2014, 28 (5), 1122–1128, Article. DOI: https://doi.org/10.1038/leu.2013.313.

  37. Kawano, Y.; Roccaro, A. M.; Ghobrial, I. M.; Azzi, J. Multiple Myeloma and the Immune Microenvironment. Current Cancer Drug Targets 2017, 17 (9), 806–818, Review. DOI: https://doi.org/10.2174/1568009617666170214102301.

  38. Kawano, Y.; Moschetta, M.; Manier, S.; Glavey, S.; Goerguen, G. T.; Roccaro, A. M.; Anderson, K. C.; Ghobrial, I. M. Targeting the bone marrow microenvironment in multiple myeloma. Immunological Reviews 2015, 263 (1), 160–172, Review. DOI: https://doi.org/10.1111/imr.12233.

  39. Kyle, R. A.; Gertz, M. A.; Witzig, T. E.; Lust, J. A.; Lacy, M. Q.; Dispenzieri, A.; Fonseca, R.; Rajkumar, S. V.; Offord, J. R.; Larson, D. R.; et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clinic Proceedings 2003, 78 (1), 21–33, Article. DOI: https://doi.org/10.4065/78.1.21.

  40. Reddy, G. K.; Mughal, T. I.; Lonial, S. Optimizing the management of treatment-related peripheral neuropathy in patients with multiple myeloma. Supportive cancer therapy 2006, 4 (1), 19–22. DOI: https://doi.org/10.3816/SCT.2006.n.027.

    Article  CAS  PubMed  Google Scholar 

  41. Rome, S.; Noonan, K.; Bertolotti, P.; Tariman, J. D.; Miceli, T.; Int Myeloma Fdn Nurse Leadership, B. Bone Health, Pain, and Mobility Evidence-based recommendations for patients with multiple myeloma. Clinical Journal of Oncology Nursing 2017, 21 (5), 47–59, Article. DOI: https://doi.org/10.1188/17.Cjon.S5.47-59.

  42. Barre, P. V.; Padmaja, G.; Rana, S.; Tiamongla. Stress and quality of life in cancer patients: medical and psychological intervention. Indian journal of psychological medicine 2018, 40 (3), 232–238.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zaleta, A. K.; Miller, M. F.; Olson, J. S.; Yuen, E. Y.; LeBlanc, T. W.; Cole, C. E.; McManus, S.; Buzaglo, J. S. Symptom burden, perceived control, and quality of life among patients living with multiple myeloma. Journal of the National Comprehensive Cancer Network 2020, 18 (8), 1087–1095.

    Article  PubMed  Google Scholar 

  44. Sonneveld, P.; Verelst, S.; Lewis, P.; Gray-Schopfer, V.; Hutchings, A.; Nixon, A.; Petrucci, M. Review of health-related quality of life data in multiple myeloma patients treated with novel agents. Leukemia 2013, 27 (10), 1959–1969.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Maatouk, I.; He, S.; Hummel, M.; Hemmer, S.; Hillengass, M.; Goldschmidt, H.; Hartmann, M.; Herzog, W.; Hillengass, J. Patients with precursor disease exhibit similar psychological distress and mental HRQOL as patients with active myeloma. Blood Cancer Journal 2019, 9, Letter. DOI: https://doi.org/10.1038/s41408-019-0172-1.

  46. McEwen, B. S. Perturbing the Organism: The Biology of Stressful Experience. JAMA 1993, 269 (10), 1315–1315. DOI: https://doi.org/10.1001/jama.1993.03500100115046 (acccessed 12/4/2022).

  47. Katayama, Y.; Battista, M.; Kao, W. M.; Hidalgo, A.; Peired, A. J.; Thomas, S. A.; Frenette, P. S. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006, 124 (2), 407–421, Article. DOI: https://doi.org/10.1016/j.cell.2005.10.041.

  48. Hanns, P.; Paczulla, A. M.; Medinger, M.; Konantz, M.; Lengerke, C. Stress and catecholamines modulate the bone marrow microenvironment to promote tumorigenesis. Cell Stress 2019, 3 (7), 221–235. DOI: https://doi.org/10.15698/cst2019.07.192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Mattsson, J.; Appelgren, L.; Hamberger, B.; Peterson, H. I. ADRENERGIC-INNERVATION OF TUMOR BLOOD-VESSELS. Cancer Letters 1977, 3 (5–6), 347–351, Article. DOI: https://doi.org/10.1016/s0304-3835(77)97078-1.

  50. Calvani, M.; Pelon, F.; Comito, G.; Taddei, M. L.; Moretti, S.; Innocenti, S.; Nassini, R.; Gerlini, G.; Borgognoni, L.; Bambi, F.; et al. Norepinephrine promotes tumor microenvironment reactivity through beta 3-adrenoreceptors during melanoma progression. Oncotarget 2015, 6 (7), 4615–4632, Article. DOI: https://doi.org/10.18632/oncotarget.2652.

  51. Hiasa, M.; Okui, T.; Allette, Y. M.; Ripsch, M. S.; Sun-Wada, G.-H.; Wakabayashi, H.; Roodman, G. D.; White, F. A.; Yoneda, T. Bone Pain Induced by Multiple Myeloma Is Reduced by Targeting V-ATPase and ASIC3Bone Pain in Multiple Myeloma. Cancer research 2017, 77 (6), 1283–1295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kovacs, A.; Vermeer, D. W.; Madeo, M.; Reavis, H. D.; Vermeer, S. J.; Williamson, C. S.; Rickel, A.; Stamp, J.; Lucido, C. T.; Cain, J. Tumor-infiltrating nerves create an electro-physiologically active microenvironment and contribute to treatment resistance. BioRxiv 2020, 2020.2004. 2024.058594.

    Google Scholar 

  53. Madeo, M.; Colbert, P. L.; Vermeer, D. W.; Lucido, C. T.; Cain, J. T.; Vichaya, E. G.; Grossberg, A. J.; Muirhead, D.; Rickel, A. P.; Hong, Z. Cancer exosomes induce tumor innervation. Nature communications 2018, 9 (1), 4284.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Saloman, J. L.; Albers, K. M.; Li, D.; Hartman, D. J.; Crawford, H. C.; Muha, E. A.; Rhim, A. D.; Davis, B. M. Ablation of sensory neurons in a genetic model of pancreatic ductal adenocarcinoma slows initiation and progression of cancer. Proceedings of the National Academy of Sciences 2016, 113 (11), 3078–3083.

    Article  CAS  Google Scholar 

  55. Tobias Braga, W. M.; da Silva, B. R.; de Carvalho, A. C.; Maekawa, Y. H.; Bortoluzzo, A. B.; Rizzatti, E. G.; Atanackovic, D.; Braga Colleoni, G. W. FOXP3 and CTLA4 overexpression in multiple myeloma bone marrow as a sign of accumulation of CD4(+) T regulatory cells. Cancer Immunology Immunotherapy 2014, 63 (11), 1189–1197, Article. DOI: https://doi.org/10.1007/s00262-014-1589-9.

  56. Xu, Y.; Zhang, X.; Liu, H.; Zhao, P.; Chen, Y.; Luo, Y.; Zhang, Z.; Wang, X. Mesenchymal stromal cells enhance the suppressive effects ofmyeloid-derived suppressor cells of multiple myeloma. Leukemia & Lymphoma 2017, 58 (11), 2668–2676, Article. DOI: https://doi.org/10.1080/10428194.2017.1298753.

  57. Najafi M, F. B., Mortezaee K. Contribution of regulatory T cells to cancer: A review. J Cell Physiol. 2019 Jun, 234(6), 7983–7993. DOI: doi: https://doi.org/10.1002/jcp.27553.

  58. Dahlhoff, J.; Manz, H.; Steinfatt, T.; Delgado-Tascon, J.; Seebacher, E.; Schneider, T.; Wilnit, A.; Mokhtari, Z.; Tabares, P.; Bockle, D.; et al. Transient regulatory T-cell targeting triggers immune control of multiple myeloma and prevents disease progression. Leukemia 2022, 36 (3), 790–800. DOI: https://doi.org/10.1038/s41375-021-01422-y.

    Article  CAS  PubMed  Google Scholar 

  59. Papadimitriou, K.; Tsakirakis, N.; Malandrakis, P.; Vitsos, P.; Metousis, A.; Orologas-Stavrou, N.; Ntanasis-Stathopoulos, I.; Kanellias, N.; Eleutherakis-Papaiakovou, E.; Pothos, P.; et al. Deep Phenotyping Reveals Distinct Immune Signatures Correlating with Prognostication, Treatment Responses, and MRD Status in Multiple Myeloma. Cancers (Basel) 2020, 12 (11). DOI: https://doi.org/10.3390/cancers12113245 From NLM.

  60. Danziger, S. A.; McConnell, M.; Gockley, J.; Young, M. H.; Rosenthal, A.; Schmitz, F.; Reiss, D. J.; Farmer, P.; Alapat, D. V.; Singh, A.; et al. Bone marrow microenvironments that contribute to patient outcomes in newly diagnosed multiple myeloma: A cohort study of patients in the Total Therapy clinical trials. Plos Medicine 2020, 17 (11), Article. DOI: https://doi.org/10.1371/journal.pmed.1003323.

  61. Nakamura, K.; Smyth, M. J. Myeloid immunosuppression and immune checkpoints in the tumor microenvironment. Cellular & Molecular Immunology 2020, 17 (1), 1–12, Review. DOI: https://doi.org/10.1038/s41423-019-0306-1.

  62. Sui, H.; Dongye, S.; Liu, X.; Xu, X.; Wang, L.; Jin, C. Q.; Yao, M.; Gong, Z.; Jiang, D.; Zhang, K.; et al. Immunotherapy of targeting MDSCs in tumor microenvironment. Frontiers in immunology 2022, 13, 990463–990463,; Review; Research Support, Non-U.S. Gov’t. DOI: https://doi.org/10.3389/fimmu.2022.990463.

  63. Suyani, E.; Sucak, G. T.; Akyurek, N.; Sahin, S.; Baysal, N. A.; Yagci, M.; Haznedar, R. Tumor-associated macrophages as a prognostic parameter in multiple myeloma. Annals of Hematology 2013, 92 (5), 669–677, Article. DOI: https://doi.org/10.1007/s00277-012-1652-6.

  64. Guillerey, C.; de Andrade, L. F.; Vuckovic, S.; Miles, K.; Ngiow, S. F.; Yong, M. C. R.; Teng, M. W. L.; Colonna, M.; Ritchie, D. S.; Chesi, M.; et al. Immunosurveillance and therapy of multiple myeloma are CD226 dependent (vol 125, pg 2077, 2015). Journal of Clinical Investigation 2015, 125 (7), 2904–2904, Correction. DOI: https://doi.org/10.1172/jci82646.

  65. Giuliani, M.; Janji, B.; Berchem, G. Activation of NK cells and disruption of PD-L1/PD-1 axis: two different ways for lenalidomide to block myeloma progression. Oncotarget 2017, 8 (14), 24031–24044, Review. DOI: https://doi.org/10.18632/oncotarget.15234.

  66. Chauhan, D.; Singh, A. V.; Brahmandam, M.; Carrasco, R.; Bandi, M.; Hideshima, T.; Bianchi, G.; Podar, K.; Tai, Y.-T.; Mitsiades, C.; et al. Functional Interaction of Plasmacytoid Dendritic Cells with Multiple Myeloma Cells: A Therapeutic Target. Cancer Cell 2009, 16 (4), 309–323, Article. DOI: https://doi.org/10.1016/j.ccr.2009.08.019.

  67. Murray, M. E.; Gavile, C. M.; Nair, J. R.; Koorella, C.; Carlson, L. M.; Buac, D.; Utley, A.; Chesi, M.; Bergsagel, P. L.; Boise, L. H.; et al. CD28-mediated pro-survival signaling induces chemotherapeutic resistance in multiple myeloma. Blood 2014, 123 (24), 3770–3779, Article. DOI: https://doi.org/10.1182/blood-2013-10-530964.

  68. Jobling, P.; Pundavela, J.; Oliveira, S. M. R.; Roselli, S.; Walker, M. M.; Hondermarck, H. Nerve-Cancer Cell Cross-talk: A Novel Promoter of Tumor Progression. Cancer Research 2015, 75 (9), 1777–1781, Review. DOI: https://doi.org/10.1158/0008-5472.Can-14-3180.

    Article  CAS  PubMed  Google Scholar 

  69. Steinwerblowsky, R. SYMPATHETIC NERVOUS-SYSTEM AND CANCER. Experimental Neurology 1974, 42 (1), 97–100, Article. DOI: https://doi.org/10.1016/0014-4886(74)90009-0.

  70. Boilly, B.; Faulkner, S.; Jobling, P.; Hondermarck, H. Nerve Dependence: From Regeneration to Cancer. Cancer Cell 2017, 31 (3), 342–354, Review. DOI: https://doi.org/10.1016/j.ccell.2017.02.005.

    Article  CAS  PubMed  Google Scholar 

  71. Kamiya, A.; Hayama, Y.; Kato, S.; Shimomura, A.; Shimomura, T.; Irie, K.; Kaneko, R.; Yanagawa, Y.; Kobayashi, K.; Ochiya, T. Genetic manipulation of autonomic nerve fiber innervation and activity and its effect on breast cancer progression. Nature Neuroscience 2019, 22 (8), 1289-+, Article. DOI: https://doi.org/10.1038/s41593-019-0430-3.

  72. Villers, A.; McNeal, J. E.; Redwine, E. A.; Freiha, F. S.; Stamey, T. A. THE ROLE OF PERINEURAL SPACE INVASION IN THE LOCAL SPREAD OF PROSTATIC ADENOCARCINOMA. Journal of Urology 1989, 142 (3), 763–768, Article. DOI: https://doi.org/10.1016/s0022-5347(17)38881-x.

  73. Bussard, K. M.; Mutkus, L.; Stumpf, K.; Gomez-Manzano, C.; Marini, F. C. Tumor-associated stromal cells as key contributors to the tumor microenvironment. Breast Cancer Research 2016, 18, Review. DOI: https://doi.org/10.1186/s13058-016-0740-2.

  74. Mancino, M.; Ametller, E.; Gascon, P.; Almendro, V. The neuronal influence on tumor progression. Biochimica Et Biophysica Acta-Reviews on Cancer 2011, 1816 (2), 105–118, Review. DOI: https://doi.org/10.1016/j.bbcan.2011.04.005.

    Article  CAS  Google Scholar 

  75. Cole, S. W.; Nagaraja, A. S.; Lutgendorf, S. K.; Green, P. A.; Sood, A. K. Sympathetic nervous system regulation of the tumour microenvironment. Nature Reviews Cancer 2015, 15 (9), 563–572.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Katayama, Y.; Battista, M.; Kao, W.-M.; Hidalgo, A.; Peired, A. J.; Thomas, S. A.; Frenette, P. S. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006, 124 (2), 407–421.

    Article  CAS  PubMed  Google Scholar 

  77. Kohm, A. P.; Sanders, V. M. Norepinephrine and beta 2-adrenergic receptor stimulation regulate CD4(+) T and B lymphocyte function in vitro and in vivo. Pharmacological Reviews 2001, 53 (4), 487–525, Review.

    CAS  PubMed  Google Scholar 

  78. Nakai, A.; Hayano, Y.; Furuta, F.; Noda, M.; Suzuki, K. Control of lymphocyte egress from lymph nodes through beta(2)-adrenergic receptors. Journal of Experimental Medicine 2014, 211 (13), 2583–2598, Article. DOI: https://doi.org/10.1084/jem.20141132.

  79. Powell, N. D.; Sloan, E. K.; Bailey, M. T.; Arevalo, J. M. G.; Miller, G. E.; Chen, E.; Kobor, M. S.; Reader, B. F.; Sheridan, J. F.; Cole, S. W. Social stress up-regulates inflammatory gene expression in the leukocyte transcriptome via beta-adrenergic induction of myelopoiesis. Proceedings of the National Academy of Sciences of the United States of America 2013, 110 (41), 16574–16579, Article. DOI: https://doi.org/10.1073/pnas.1310655110.

  80. Bae, G. E.; Kim, H. S.; Won, K. Y.; Kim, G. Y.; Sung, J. Y.; Lim, S. J. Lower Sympathetic Nervous System Density and β-adrenoreceptor Expression Are Involved in Gastric Cancer Progression. Anticancer Res 2019, 39 (1), 231–236. DOI: https://doi.org/10.21873/anticanres.13102 From NLM.

  81. Dal Monte, M.; Casini, G.; Filippi, L.; Nicchia, G. P.; Svelto, M.; Bagnoli, P. Functional involvement of beta 3-adrenergic receptors in melanoma growth and vascularization. Journal of Molecular Medicine-Jmm 2013, 91 (12), 1407–1419, Article. DOI: https://doi.org/10.1007/s00109-013-1073-6.

  82. Thaker, P. H.; Han, L. Y.; Kamat, A. A.; Arevalo, J. M.; Takahashi, R.; Lu, C.; Jennings, N. B.; Armaiz-Pena, G.; Bankson, J. A.; Ravoori, M.; et al. Chronic stress promotes tumor growth and angiogenesis in a mouse model of ovarian carcinoma (vol 12, pg 939, 2006). Nature Medicine 2021, 27 (12), 2246–2246, Correction. DOI: https://doi.org/10.1038/s41591-021-01566-5.

  83. Cheng, Y.; Sun, F.; D’Souza, A.; Dhakal, B.; Pisano, M.; Chhabra, S.; Stolley, M.; Hari, P.; Janz, S. Autonomic nervous system control of multiple myeloma. Blood Reviews 2021, 46, Review. DOI: https://doi.org/10.1016/j.blre.2020.100741.

  84. Hossain, F.; Al-Khami, A. A.; Wyczechowska, D.; Hernandez, C.; Zheng, L.; Reiss, K.; Del Valle, L.; Trillo-Tinoco, J.; Maj, T.; Zou, W.; et al. Inhibition of Fatty Acid Oxidation Modulates Immunosuppressive Functions of Myeloid-Derived Suppressor Cells and Enhances Cancer Therapies. Cancer Immunology Research 2015, 3 (11), 1236–1247, Article. DOI: https://doi.org/10.1158/2326-6066.Cir-15-0036.

  85. Xiang, H.; Yang, R.; Tu, J.; Xi, Y.; Yang, S.; Lv, L.; Zhai, X.; Zhu, Y.; Dong, D.; Tao, X. Metabolic reprogramming of immune cells in pancreatic cancer progression. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie 2022, 157, 113992–113992,; Review. DOI: https://doi.org/10.1016/j.biopha.2022.113992.

  86. Mendez-Ferrer, S.; Battista, M.; Frenette, P. S. Cooperation of beta(2)- and beta(3)-adrenergic receptors in hematopoietic progenitor cell mobilization. In Skeletal Biology and Medicine, Zaidi, M. Ed.; Annals of the New York Academy of Sciences, Vol. 1192; 2010; pp 139–144.

    Google Scholar 

  87. Ghobrial, I. M.; Liu, C.-J.; Redd, R. A.; Perez, R. P.; Baz, R.; Zavidij, O.; Sklavenitis-Pistofidis, R.; Richardson, P. G.; Anderson, K. C.; Laubach, J.; et al. A Phase Ib/II Trial of the First-in-Class Anti-CXCR4 Antibody Ulocuplumab in Combination with Lenalidomide or Bortezomib Plus Dexamethasone in Relapsed Multiple Myeloma. Clinical Cancer Research 2020, 26 (2), 344–353, Article. DOI: https://doi.org/10.1158/1078-0432.Ccr-19-0647.

  88. Ghobrial, I. M.; Liu, C.-J.; Zavidij, O.; Azab, A. K.; Baz, R.; Laubach, J. P.; Mishima, Y.; Armand, P.; Munshi, N. C.; Basile, F.; et al. Phase I/II trial of the CXCR4 inhibitor plerixafor in combination with bortezomib as a chemosensitization strategy in relapsed/refractory multiple myeloma. American Journal of Hematology 2019, 94 (11), 1244–1253, Article. DOI: https://doi.org/10.1002/ajh.25627.

  89. Balood, M.; Ahmadi, M.; Eichwald, T.; Ahmadi, A.; Majdoubi, A.; Roversi, K.; Roversi, K.; Lucido, C. T.; Restaino, A. C.; Huang, S. Nociceptor neurons affect cancer immunosurveillance. Nature 2022, 1–8.

    Google Scholar 

  90. Olechnowicz, S. W.; Weivoda, M. M.; Lwin, S. T.; Leung, S. K.; Gooding, S.; Nador, G.; Javaid, M. K.; Ramasamy, K.; Rao, S. R.; Edwards, J. R. Multiple myeloma increases nerve growth factor and other pain-related markers through interactions with the bone microenvironment. Scientific reports 2019, 9 (1), 14189.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Diaz-delCastillo, M.; Kamstrup, D.; Olsen, R. B.; Hansen, R. B.; Pembridge, T.; Simanskaite, B.; Jimenez-Andrade, J. M.; Lawson, M. A.; Heegaard, A. M. Differential Pain-Related Behaviors and Bone Disease in Immunocompetent Mouse Models of Myeloma. JBMR plus 2020, 4 (2), e10252.

    Article  CAS  PubMed  Google Scholar 

  92. Sloan, E. K.; Capitanio, J. P.; Tarara, R. P.; Mendoza, S. P.; Mason, W. A.; Cole, S. W. Social stress enhances sympathetic innervation of primate lymph nodes: Mechanisms and implications for viral pathogenesis. Journal of Neuroscience 2007, 27 (33), 8857–8865, Article. DOI: https://doi.org/10.1523/jneurosci.1247-07.2007.

  93. Sloan, E. K.; Capitanio, J. P.; Tarara, R. P.; Cole, S. W. Social temperament and lymph node innervation. Brain Behavior and Immunity 2008, 22 (5), 717–726, Article. DOI: https://doi.org/10.1016/j.bbi.2007.10.010.

  94. Lutgendorf, S. K.; DeGeest, K.; Dahmoush, L.; Farley, D.; Penedo, F.; Bender, D.; Goodheart, M.; Buekers, T. E.; Mendez, L.; Krueger, G.; et al. Social isolation is associated with elevated tumor norepinephrine in ovarian carcinoma patients. Brain Behavior and Immunity 2011, 25 (2), 250–255, Article. DOI: https://doi.org/10.1016/j.bbi.2010.10.012.

  95. Chida, Y.; Hamer, M.; Wardle, J.; Steptoe, A. Do stress-related psychosocial factors contribute to cancer incidence and survival? Nat Clin Pract Oncol 2008, 5 (8), 466–475. DOI: https://doi.org/10.1038/ncponc1134 From NLM.

  96. Cheng, Y.; Tang, X.-Y.; Li, Y.-X.; Zhao, D.-D.; Cao, Q.-H.; Wu, H.-X.; Yang, H.-B.; Hao, K.; Yang, Y. Depression-induced neuropeptide Y secretion promotes prostate cancer growth by recruiting myeloid cells. Clinical Cancer Research 2019, 25 (8), 2621–2632.

    Article  CAS  PubMed  Google Scholar 

  97. Nieman, D. C.; Wentz, L. M. The compelling link between physical activity and the body’s defense system. Journal of Sport and Health Science 2019, 8 (3), 201–217, Review. DOI: https://doi.org/10.1016/j.jshs.2018.09.009.

    Article  PubMed  Google Scholar 

  98. Sitlinger, A.; Brander, D. M.; Bartlett, D. B. Impact of exercise on the immune system and outcomes in hematologic malignancies. Blood Advances 2020, 4 (8), 1801–1811, Review. DOI: https://doi.org/10.1182/bloodadvances.2019001317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Duggal, N. A.; Niemiro, G.; Harridge, S. D. R.; Simpson, R. J.; Lord, J. M. Can physical activity ameliorate immunosenescence and thereby reduce age-related multi-morbidity? Nat Rev Immunol 2019, 19 (9), 563–572. DOI: https://doi.org/10.1038/s41577-019-0177-9 From NLM.

  100. Spielmann, G.; McFarlin, B. K.; O’Connor, D. P.; Smith, P. J.; Pircher, H.; Simpson, R. J. Aerobic fitness is associated with lower proportions of senescent blood T-cells in man. Brain Behav Immun 2011, 25 (8), 1521–1529. DOI: https://doi.org/10.1016/j.bbi.2011.07.226 From NLM.

  101. Bigley, A. B.; Rezvani, K.; Chew, C.; Sekine, T.; Pistillo, M.; Crucian, B.; Bollard, C. M.; Simpson, R. J. Acute exercise preferentially redeploys NK-cells with a highly-differentiated phenotype and augments cytotoxicity against lymphoma and multiple myeloma target cells. Brain Behav Immun 2014, 39, 160–171. DOI: https://doi.org/10.1016/j.bbi.2013.10.030 From NLM.

  102. Timmerman, K. L.; Flynn, M. G.; Coen, P. M.; Markofski, M. M.; Pence, B. D. Exercise training-induced lowering of inflammatory (CD14+CD16+) monocytes: a role in the anti-inflammatory influence of exercise? J Leukoc Biol 2008, 84 (5), 1271–1278. DOI: https://doi.org/10.1189/jlb.0408244 From NLM.

  103. Hylander, B. L.; Gordon, C. J.; Repasky, E. A. Manipulation of Ambient Housing Temperature To Study the Impact of Chronic Stress on Immunity and Cancer in Mice. Journal of Immunology 2019, 202 (3), 631–636, Review. DOI: https://doi.org/10.4049/jimmunol.1800621.

  104. Hwa, Y. L.; Lacy, M. Q.; Gertz, M. A.; Kumar, S. K.; Muchtar, E.; Buadi, F. K.; Dingli, D.; Leung, N.; Kapoor, P.; Go, R. S.; et al. Use of beta blockers is associated with survival outcome of multiple myeloma patients treated with pomalidomide. European Journal of Haematology 2021, 106 (3), 433–436, Letter. DOI: https://doi.org/10.1111/ejh.13559.

  105. Shim, H.; Ha, J. H.; Lee, H.; Sohn, J. Y.; Kim, H. J.; Eom, H.-S.; Kong, S.-Y. Expression of Myeloid Antigen in Neoplastic Plasma Cells Is Related to Adverse Prognosis in Patients with Multiple Myeloma. Biomed Research International 2014, 2014, Article. DOI: https://doi.org/10.1155/2014/893243.

  106. Nair, R.; Subramaniam, V.; Barwick, B. G.; Gupta, V. A.; Matulis, S. M.; Lonial, S.; Boise, L. H.; Nooka, A. K.; Muthumalaiappan, K.; Shanmugam, M. β adrenergic signaling regulates hematopoietic stem and progenitor cell commitment and therapy sensitivity in multiple myeloma. Haematologica 2022, 107 (9), 2226–2231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth Repasky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Aqeel, S.B., James, C., Hillengass, J., Repasky, E. (2023). Neuroimmunoregulation of Cancer: The Case for Multiple Myeloma. In: Amit, M., Scheff, N.N. (eds) Cancer Neuroscience. Springer, Cham. https://doi.org/10.1007/978-3-031-32429-1_7

Download citation

Publish with us

Policies and ethics