Skip to main content

Evaluation of the Use of Low Precision Floating-Point Arithmetic for Applications in Radio Astronomy

  • Conference paper
  • First Online:
Next Generation Arithmetic (CoNGA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13851))

Included in the following conference series:

  • 240 Accesses

Abstract

Conventionally, the front-end Digital Signal Processing (DSP) for applications in radio astronomy employed low-precision fixed-point arithmetic. However, the next-generation large-scale projects for radio astronomy such as the Square Kilometre Array (SKA), Atacama Large Millimeter/sub-millimeter Array (ALMA) upgrade and the proposed next-generation Very Large Array (ngVLA) have ambitious science goals that require higher sensitivities that in turn require high-precision arithmetic implementations. Also, the increasing strength, bandwidth and number of sources of Radio Frequency Interference (RFI) exacerbate the need for high-precision arithmetic. These factors lead to higher cost and power and longer design cycles for the DSP systems in radio astronomy. Meanwhile, hardware manufacturers are offering native support for low-precision floating-point number formats such as float16 and bfloat16 and variants of those. In addition to those, ‘posits’, a new number representation has been introduced by John Gustafson and is claiming to offer better accuracy compared to float16 under certain conditions. With these compact data formats, it is expected that signal processing systems to consume lower power and resources. For typical radio astronomical observations, the achievable sensitivity is determined by the ability to suppress RFI and the accuracy of delay correction. In the following, these two ‘qualitative’ aspects are studied for the front-end DSP modules of the SKA correlator and beamformer where the coefficients are represented with float16, bfloat16, variants of those formats and posit16 and compared against the current fixed-point representation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Beamformers combine the signals from multiple receptors in such a way to selectively enhance signals propagating from certain directions [16].

  2. 2.

    Search Window Channelizer.

  3. 3.

    The binary-point is set such that fixed19 has 18 fractional bits.

  4. 4.

    The 32-bit IEEE standard single precision output for float16 and bfloat16 + in Variable Precision DSP Blocks offered with Intel Agilex FPGAs [25] and 256-bit wide ‘Quire’ proposed for the 16-bit posits [31].

References

  1. Thompson, A.R., Moran, J.M., Swenson-Jr, G.W.: Interferometry and Synthesis in Radio Astronomy, 3rd edn. Springer, New York (2017)

    Google Scholar 

  2. Weinreb, S.: A Digital spectral analysis technique and its application to radio astronomy. Technical report 412, Research Lab. for Electronics, MIT, Cambridge (1963)

    Google Scholar 

  3. Goldstein, R.M.: A technique for the measurement of the power spectra of very weak signals. IRE Trans. Space Electron. Telem. 8, 170–173 (1962)

    Article  Google Scholar 

  4. Cooper, B.F.C.: Correlators with two-bit quantization. Aust. J. Phys. 23, 521–527 (1970)

    Google Scholar 

  5. Hagen, J.B., Farley, D.T.: Digital correlation techniques in radio science. Radio Sci. 8, 775–784 (1973)

    Article  Google Scholar 

  6. Perley, R., et al.: The expanded very large array. Proc. IEEE 97, 1448–1462 (2009)

    Article  Google Scholar 

  7. Carlson, B.R., Dewdney, P.E.: Efficient wideband digital correlation. Elect. Letts. 36, 987–988 (2000)

    Article  Google Scholar 

  8. Escoffier, R.P., et al.: The ALMA correlator. Astron. Astrophys. 462, 801–810 (2007)

    Article  Google Scholar 

  9. Grant, A.H., Bunton, J.D., Gunst, A.W., Baillie P., bij de Vaate J-G.: Introduction to the SKA low correlator and beamformer system. In: Proceedings of SPIE 9906, Ground-Based and Airborne Telescopes VI, 99062S (2016)

    Google Scholar 

  10. Rupen, M.P., Carlson, B., Pleasance, M.: Trident frequency slice architecture correlator/beamformer reference design for ngVLA. In: AAS, vol. 233, p. 361.06 (2019)

    Google Scholar 

  11. Carlson, B., Pleasance, M., Gunaratne, T., Vrcic, S.: NRC TALON frequency slice architecture correlator/beamformer (AT.CBF) for ALMA. ALMA Memo 617 (2020)

    Google Scholar 

  12. Pleasance, M., Carlson, B., Vrcic, S., Gunaratne, T.: TALON demonstration correlator architecture for early ska array assemblies. In: 2021 XXXIVth General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (2021)

    Google Scholar 

  13. van der Byl, A., et al.: MeerKAT correlator-beamformer: a real-time processing back-end for astronomical observations. J. Astron. In: Telesc. Instrum. Syst. 8(1), 011006 (2021)

    Google Scholar 

  14. van der Merwe, P.S., Andriambeloson, J.A.: On-site wideband spectrum measurements. Mesa Solutions (Pty) Ltd., SKA/17/12/11 - Rev1 (2018). (Restricted Access)

    Google Scholar 

  15. Selina, R., Ojeda, O. Y.: Headroom, dynamic range, and quantization considerations. ngVLA Electron. Memo 8 (2021)

    Google Scholar 

  16. Trees, H.L.V.: Detection, Estimation, and Modulation Theory, Optimum Array Processing. Wiley-Interscience, New York, Chichester (2002)

    Google Scholar 

  17. Ercegovac, M.D., Lang, T.: Digital Arithmetic. Morgan Kaufmann Publishers (2004)

    Google Scholar 

  18. Gunaratne, T., Carlson, B., Comoretto, G., Rupen, M., Pleasance, M.: An end-to-end model for the correlator and beamformer of the square kilometer array mid telescope. In: Modeling, Systems Engineering, and Project Management for Astronomy IX. International Society for Optics and Photonics (2020)

    Google Scholar 

  19. Pleasance, M., Zhang, H., Carlson, B., Webber, R., Chalmers, D., Gunaratne, T.: High-performance hardware platform for the square kilomtre array mid correlator and beamformer. In: 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS) (2017)

    Google Scholar 

  20. Early Power Estimators (EPE) and Power Analyzer. https://www.intel.com/content/www/us/en/support/programmable/support-resources/power/pow-powerplay.html. Accessed 01 Nov 2022

  21. IEEE Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std 754-1985, pp. 1–20 (1985). https://doi.org/10.1109/IEEESTD.1985.82928

  22. IEEE Standard for Floating-Point Arithmetic. IEEE Std 754-2008, pp. 1–70 (2008). https://doi.org/10.1109/IEEESTD.2008.4610935

  23. NVIDIA Corporation, NVIDIA Tesla P100 GPU architecture, WP-08019-001 v01.1 (2016)

    Google Scholar 

  24. NVIDIA Corporation, NVIDIA A100 tensor core GPU architecture, Whitepaper v1.0 (2020)

    Google Scholar 

  25. Intel Corporation, Intel® Agilex™ Variable Precision DSP Blocks User Guide. 683037, V21.2. https://www.intel.com/content/www/us/en/docs/programmable/683037/21-2/variable-precision-dsp-blocks-overview.html. Accessed 01 Nov 2022

  26. Intel Corporation, Floating-Point IP Cores User Guide. https://www.intel.com/content/www/us/en/docs/programmable/683750/20-1/about-floating-point-ip-cores.html. Accessed 01 Nov 2022

  27. AMD-Xilinx Corporation, Floating-Point Operator. https://www.Xilinx.com/products/intellectual-property/floating_pt.html. Accessed 01 Nov 2022

  28. AMD-Xilinx Corporation, Performance and Resource Utilization for Floating-point v7.1 (IP Core for Vivado Design Suite Release 2022.2). https://www.Xilinx.com/htmldocs/ip_docs/pru_files/floating-point.html. Accessed 01 Nov 2022

  29. Gustafson, J.L., Yonemoto, I.: Beating floating point at its own game: posit arithmetic. Supercomput. Front. Innov.: Int. J. 4(2), 71–86 (2017)

    Google Scholar 

  30. Gustafson, J.L.: The End of Error: Unum Computing. Chapman and Hall/CRC, Boca Raton (2015)

    MATH  Google Scholar 

  31. de Dinechin, F., Forget, L., Muller, J.-M., Uguen, Y.: Posits: the good, the bad and the ugly. In: 2019 Proceedings of the Conference for Next Generation Arithmetic (CoNGA), pp. 1–10. Association for Computing Machinery, New York (2019)

    Google Scholar 

  32. Mallasén, D., Murillo, R., Barrio, A.A.D., Botella, G., Piñuel, L., Prieto-Matias, M.: PERCIVAL: open-source posit RISC-V core with quire capability. IEEE Trans. Emerg. Top. Comput. 10, 1241–1252 (2022)

    Article  Google Scholar 

  33. Podobas, A., Matsuoka, S.: Hardware implementation of POSITs and their application in FPGAs. In: 2018 IEEE International Parallel and Distributed Processing Symposium Workshops (IPDPSW), pp. 138–145 (2018)

    Google Scholar 

  34. Jaiswal, M.K., So, H.K.-H.: PACoGen: a hardware posit arithmetic core generator. IEEE Access. 7, 74586–74601 (2019)

    Article  Google Scholar 

  35. harris, f.j: Multirate Signal Processing for Communication Systems (Ed2). River Publishers, S.l. (2021)

    Google Scholar 

  36. Carlson, B., Gunaratne T.: Signal processing aspects of the sample clock frequency offset scheme for the SKA1 mid telescope array. In: 2017 XXXIInd General Assembly and Scientific Symposium of the International Union of Radio Science (URSI GASS), Montreal, QC (2017)

    Google Scholar 

  37. Gunaratne, T., Carlson, B., Comoretto, G.: Novel RFI mitigation methods in the square kilometre array 1 mid correlator beamformer. J. Astro. Inst. 8(1) (2019)

    Google Scholar 

  38. Fasi, M., Mikaitis, M.: CPFloat: A C library for emulating low-precision arithmetic. MIMS EPrint 2020.22, The University of Manchester, UK (2020)

    Google Scholar 

  39. Meurant, G.: Posit arithmetic matlab toolbox. https://gerard-meurant.pagesperso-orange.fr/soft_meurant_n.html. Accessed 21 Nov 2022

  40. Posit Working Group, Standard for Posit™ Arithmetic (2022). 2 Mar 2022

    Google Scholar 

Download references

Acknowledgments

The author is grateful to prof. Gérard Meurant‬ for providing the MATLAB Posit Toolbox [39] and for promptly responding to the queries regarding its usage.‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬‬

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thushara Kanchana Gunaratne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gunaratne, T.K. (2023). Evaluation of the Use of Low Precision Floating-Point Arithmetic for Applications in Radio Astronomy. In: Gustafson, J., Leong, S.H., Michalewicz, M. (eds) Next Generation Arithmetic. CoNGA 2023. Lecture Notes in Computer Science, vol 13851. Springer, Cham. https://doi.org/10.1007/978-3-031-32180-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-32180-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-32179-5

  • Online ISBN: 978-3-031-32180-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics