Skip to main content

Optimal Transport Between GMM for Multiscale Texture Synthesis

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

  • 891 Accesses

Abstract

Using optimal transport in image processing tasks has become very popular. However, it still faces difficult computational issues when dealing with high-dimensional distributions. We propose here to use the recently introduced GMM-OT formulation, which consists in restricting the optimal transport problem to the set of Gaussian mixture models. As a proof of concept, we use it to improve the texture model Texto based on optimal transport between distributions of image patches. Using GMM-OT in this texture model allows to deal with larger patches, hence providing results with better geometric details. This new model allows for synthesis, mixing, and style transfer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It would be interesting here to have a GMM estimation method that directly minimizes a transport cost between the GMM and the discrete patch distribution.

References

  1. Bonneel, N., Van De Panne, M., Paris, S., Heidrich, W.: Displacement interpolation using Lagrangian mass transport. In: Proceedings of the 2011 SIGGRAPH Asia Conference, pp. 1–12 (2011)

    Google Scholar 

  2. Bonnotte, N.: Unidimensional and evolution methods for optimal transportation. Ph.D. thesis, Paris 11 (2013)

    Google Scholar 

  3. Chizat, L., Roussillon, P., Léger, F., Vialard, F.X., Peyré, G.: Faster Wasserstein distance estimation with the Sinkhorn divergence. Adv. Neural. Inf. Process. Syst. 33, 2257–2269 (2020)

    Google Scholar 

  4. Courty, N., Flamary, R., Habrard, A., Rakotomamonjy, A.: Joint distribution optimal transportation for domain adaptation. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  5. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Advances in Neural Information Processing Systems, pp. 2292–2300 (2013)

    Google Scholar 

  6. Delon, J., Desolneux, A.: A Wasserstein-type distance in the space of Gaussian mixture models. SIAM J. Imag. Sci. 13(2), 936–970 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  7. Feydy, J., Roussillon, P., Trouvé, A., Gori, P.: Fast and scalable optimal transport for brain tractograms. In: Shen, D., et al. (eds.) MICCAI 2019. LNCS, vol. 11766, pp. 636–644. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32248-9_71

    Chapter  Google Scholar 

  8. Galerne, B., Leclaire, A., Rabin, J.: A texture synthesis model based on semi-discrete optimal transport in patch space. SIAM J. Imag. Sci. 11(4), 2456–2493 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gatys, L.A., Ecker, A.S., Bethge, M.: Image style transfer using convolutional neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2414–2423 (2016)

    Google Scholar 

  10. Genevay, A., Chizat, L., Bach, F., Cuturi, M., Peyré, G.: Sample complexity of Sinkhorn divergences. In: The 22nd International Conference on Artificial Intelligence and Statistics, pp. 1574–1583. PMLR (2019)

    Google Scholar 

  11. Hertrich, J., Houdard, A., Redenbach, C.: Wasserstein patch prior for image superresolution. IEEE Trans. Comput. Imaging 8, 693–704 (2022)

    Article  Google Scholar 

  12. Karras, T., Laine, S., Aila, T.: A style-based generator architecture for generative adversarial networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–4410 (2019)

    Google Scholar 

  13. Leclaire, A., Rabin, J.: A stochastic multi-layer algorithm for semi-discrete optimal transport with applications to texture synthesis and style transfer. J. Math. Imaging Vis. 63(2), 282–308 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liang, L., Liu, C., Xu, Y.Q., Guo, B., Shum, H.Y.: Real-time texture synthesis by patch-based sampling. ACM Trans. Graph. 20(3), 127–150 (2001)

    Article  Google Scholar 

  15. Mignon, S., Galerne, B., Hidane, M., Louchet, C., Mille, J.: Semi-unbalanced regularized optimal transport for image restoration. In: Actes du GRETSI (2022)

    Google Scholar 

  16. Ulyanov, D., Lebedev, V., Vedaldi, A., Lempitsky, V.: Texture networks: feed-forward synthesis of textures and stylized images. In: Proceedings of the International Conference on Machine Learning, vol. 48, pp. 1349–1357 (2016)

    Google Scholar 

  17. Weed, J., Bach, F.: Sharp asymptotic and finite-sample rates of convergence of empirical measures in Wasserstein distance. Bernoulli 25(4A), 2620–2648 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Xia, G., Ferradans, S., Peyré, G., Aujol, J.: Synthesizing and mixing stationary Gaussian texture models. SIAM J. Imag. Sci. 7(1), 476–508 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur Leclaire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Delon, J., Desolneux, A., Facq, L., Leclaire, A. (2023). Optimal Transport Between GMM for Multiscale Texture Synthesis. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_48

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics