Skip to main content

Convergence Guarantees of Overparametrized Wide Deep Inverse Prior

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

  • 864 Accesses

Abstract

Neural networks have become a prominent approach to solve inverse problems in recent years. Amongst the different existing methods, the Deep Image/Inverse Priors (DIPs) technique is an unsupervised approach that optimizes a highly overparametrized neural network to transform a random input into an object whose image under the forward model matches the observation. However, the level of overparametrization necessary for such methods remains an open problem. In this work, we aim to investigate this question for a two-layers neural network with a smooth activation function. We provide overparametrization bounds under which such network trained via continuous-time gradient descent will converge exponentially fast with high probability which allows to derive recovery prediction bounds. This work is thus a first step towards a theoretical understanding of overparametrized DIP networks, and more broadly it participates to the theoretical understanding of neural networks in inverse problem settings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allen-Zhu, Z., Li, Y., Song, Z.: A Convergence theory for deep learning via over-parameterization. In: ICML, pp. 242–252 (2019)

    Google Scholar 

  2. Arridge, S., Maass, P., Ozan, Ö., Schönlieb, C.-B.: Solving inverse problems using data-driven models. Acta Numer. 28, 1–174 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bartlett, P.L., Montanari, A., Rakhlin, A.: Deep learning: a statistical viewpoint. Acta Numer. 30, 87–201 (2021)

    Google Scholar 

  4. Chizat, L., Oyallon, E., Bach, F.: On Lazy training in differentiable programming. In: NeurIPS (2019)

    Google Scholar 

  5. Du, S.S., Zhai, X., Póczos, B., Singh, A.: Gradient descent provably optimizes over-parameterized neural networks. In: ICLR (2019)

    Google Scholar 

  6. Fang, C., Dong, H., Zhang, T.: Mathematical Models of Overparameterized Neural Networks. Proc. IEEE 109(5), 683–703 (2021)

    Article  Google Scholar 

  7. Jacot, A., Gabriel, F., and Hongler, C.: Neural tangent kernel: convergence and generalization in neural networks. In: NeurIPS (2018)

    Google Scholar 

  8. Liu, J., Sun, Y., Xu, X., Kamilov, U.S.: Image restoration using total variation regularized deep image prior. In: IEEE ICASSP, pp. 7715–7719 (2019)

    Google Scholar 

  9. Mataev, G., Milanfar, P., and Elad, M.: DeepRED: deep image prior powered by RED. In: ICCV, pp. 0–0 (2019)

    Google Scholar 

  10. Monga, V., Li, Y., Eldar, Y.C.: Algorithm unrolling: interpretable, efficient deep learning for signal and image processing. IEEE SPM 38(2), 18–44 (2021)

    Google Scholar 

  11. Mukherjee, S., Hauptmann, A., Öktem, O., Pereyra, M., Schönlieb, C.-B.: Learned reconstruction methods with convergence guarantees (2022). arXiv:2206.05431 [cs]. Sept. 2022

  12. Ongie, G., Jalal, A., Metzler, C.A., Baraniuk, R.G., Dimakis, A.G., Willett, R.: Deep learning techniques for inverse problems in imaging. IEEE J-SAIT 1(1), 39–56 (2020)

    Google Scholar 

  13. Oymak, S., Soltanolkotabi, M.: Overparameterized nonlinear learning: gradient descent takes the shortest Path? In: ICML, pp. 4951–4960 (2019)

    Google Scholar 

  14. Oymak, S., Soltanolkotabi, M.: Toward moderate overparameterization: global convergence guarantees for training shallow neural networks. IEEE J-SAIT 1, 84–105 (2020)

    Google Scholar 

  15. Prost, J., Houdard, A., Almansa, A., Papadakis, N.: Learning local regularization for variational image restoration. In: SSVM, pp. 358–370 (2021)

    Google Scholar 

  16. Shi, Z., Mettes, P., Maji, S., Snoek, C.G.M.: On measuring and controlling the spectral bias of the deep image prior. Int. J. Comput. Vis. 130(4), 885–908 (2022). https://doi.org/10.1007/s11263-021-01572-7

    Article  Google Scholar 

  17. Tropp, J.A.: An introduction to matrix concentration inequalities. arXiv:1501.01571 [cs, math, stat] (2015). arXiv: 1501.01571

  18. Ulyanov, D., Vedaldi, A., and Lempitsky, V.: Deep image prior. Int. J. Comput. Vis. 128(7), 1867–1888 (2020). arXiv: 1711.10925

  19. Venkatakrishnan, S.V., Bouman, C.A., and Wohlberg, B.: Plug-and-Play priors for model based reconstruction. In: GlobalSIP, pp. 945–948 (2013)

    Google Scholar 

  20. Zukerman, J., Tirer, T., and Giryes, R.: BP-DIP: A Backprojection based deep image prior. In: EUSIPCO 2020, pp. 675–679 (2021)

    Google Scholar 

Download references

Acknowledgements

The authors thank the French National Research Agency (ANR) for funding the project ANR-19-CHIA-0017-01-DEEP-VISION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Buskulic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Buskulic, N., Quéau, Y., Fadili, J. (2023). Convergence Guarantees of Overparametrized Wide Deep Inverse Prior. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics