Skip to main content

Latent-Space Disentanglement with Untrained Generator Networks for the Isolation of Different Motion Types in Video Data

  • Conference paper
  • First Online:
Scale Space and Variational Methods in Computer Vision (SSVM 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14009))

Abstract

Isolating different types of motion in video data is a highly relevant problem in video analysis. Applications can be found, for example, in dynamic medical or biological imaging, where the analysis and further processing of the dynamics of interest is often complicated by additional, unwanted dynamics, such as motion of the measurement subject. In this work, it is empirically shown that a representation of video data via untrained generator networks, together with a specific technique for latent space disentanglement that uses minimal, one-dimensional information on some of the underlying dynamics, allows to efficiently isolate different, highly non-linear motion types. In particular, such a representation allows to freeze any selection of motion types, and to obtain accurate independent representations of other dynamics of interest. Obtaining such a representation does not require any pre-training on a training data set, i.e., all parameters of the generator network are learned directly from a single video.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Data from the ISMRM reconstruction challenge 2014 challenge.ismrm.org.

References

  1. Abdullah, A., Holler, M., Kunisch, K., Landman, M.S.: Source code for: latent-space disentanglement with untrained generator networks for the isolation of different motion types in video data (2023). https://github.com/hollerm/generator_based_motion_isolation

  2. Bustin, A., Fuin, N., Botnar, R.M., Prieto, C.: From compressed-sensing to artificial intelligence-based cardiac MRI reconstruction. Front. Cardiovasc. Med. 7, 17 (2020). https://doi.org/10.3389/fcvm.2020.00017

    Article  Google Scholar 

  3. Chen, X., Duan, Y., Houthooft, R., Schulman, J., Sutskever, I., Abbeel, P.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  4. Fortun, D., Bouthemy, P., Kervrann, C.: Optical flow modeling and computation: a survey. Comput. Vis. Image Underst. 134, 1–21 (2015). https://doi.org/10.1016/j.cviu.2015.02.008

    Article  MATH  Google Scholar 

  5. Fu, Y., Lei, Y., Wang, T., Curran, W.J., Liu, T., Yang, X.: Deep learning in medical image registration: a review. Phys. Med. Biol. 65(20), 20TR01 (2020). https://doi.org/10.1088/1361-6560/ab843e

  6. Hälvä, H., et al.: Disentangling identifiable features from noisy data with structured nonlinear ICA. In: Advances in Neural Information Processing Systems, vol. 34 (2021)

    Google Scholar 

  7. Hamy, V., et al.: Respiratory motion correction in dynamic MRI using robust data decomposition registration - application to DCE-MRI. Med. Image Anal. 18(2), 301–313 (2014). https://doi.org/10.1016/j.media.2013.10.016

    Article  Google Scholar 

  8. Hyder, R., Asif, M.S.: Generative models for low-dimensional video representation and reconstruction. IEEE Trans. Signal Process. 68, 1688–1701 (2020). https://doi.org/10.1109/TSP.2020.2977256

    Article  MATH  Google Scholar 

  9. Hyvärinen, A., Pajunen, P.: Nonlinear independent component analysis: existence and uniqueness results. Neural Netw. 12(3), 429–439 (1999). https://doi.org/10.1016/S0893-6080(98)00140-3

    Article  Google Scholar 

  10. Khemakhem, I., Kingma, D., Monti, R., Hyvarinen, A.: Variational autoencoders and nonlinear ICA: a unifying framework. In: International Conference on Artificial Intelligence and Statistics, pp. 2207–2217 (2020)

    Google Scholar 

  11. Lingala, S.G., DiBella, E., Jacob, M.: Deformation corrected compressed sensing (DC-CS): a novel framework for accelerated dynamic MRI. IEEE Trans. Med. Imaging 34(1), 72–85 (2015). https://doi.org/10.1109/TMI.2014.2343953

    Article  Google Scholar 

  12. Oliveira, F.P., Tavares, J.M.R.: Medical image registration: a review. Comput. Methods Biomech. Biomed. Engin. 17(2), 73–93 (2014). https://doi.org/10.1080/10255842.2012.670855

    Article  Google Scholar 

  13. Paszke, A., et al.: Automatic differentiation in PyTorch. In: Advances in Neural information processing systems (2017)

    Google Scholar 

  14. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  15. Rahmim, A., Tang, J., Zaidi, H.: Four-dimensional (4D) image reconstruction strategies in dynamic PET: beyond conventional independent frame reconstruction. Med. Phys. 36(8), 3654–3670 (2009). https://doi.org/10.1118/1.3160108

    Article  Google Scholar 

  16. Schloegl, M., Holler, M., Schwarzl, A., Bredies, K., Stollberger, R.: Infimal convolution of total generalized variation functionals for dynamic MRI. Magn. Reson. Med. 78(1), 142–155 (2017). https://doi.org/10.1002/mrm.26352

    Article  Google Scholar 

  17. Tu, Z., et al.: A survey of variational and CNN-based optical flow techniques. Signal Process.: Image Commun. 72, 9–24 (2019). https://doi.org/10.1016/j.image.2018.12.002

    Article  Google Scholar 

  18. Tulyakov, S., Liu, M.Y., Yang, X., Kautz, J.: MoCoGAN: decomposing motion and content for video generation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1526–1535 (2018)

    Google Scholar 

  19. Ulyanov, D., Vedaldi, A., Lempitsky, V.: Deep image prior. Int. J. Comput. Vision 128(7), 1867–1888 (2020). https://doi.org/10.1007/s11263-020-01303-4

    Article  Google Scholar 

  20. Wollny, G., Kellman, P., Santos, A., Ledesma-Carbayo, M.J.: Automatic motion compensation of free breathing acquired myocardial perfusion data by using independent component analysis. Med. Image Anal. 16(5), 1015–1028 (2012). https://doi.org/10.1016/j.media.2012.02.004

    Article  Google Scholar 

  21. Yoo, J., Jin, K.H., Gupta, H., Yerly, J., Stuber, M., Unser, M.: Time-dependent deep image prior for dynamic MRI. IEEE Trans. Med. Imaging 40(12), 3337–3348 (2021). https://doi.org/10.1109/TMI.2021.3084288

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Holler .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Abdullah, A., Holler, M., Kunisch, K., Landman, M.S. (2023). Latent-Space Disentanglement with Untrained Generator Networks for the Isolation of Different Motion Types in Video Data. In: Calatroni, L., Donatelli, M., Morigi, S., Prato, M., Santacesaria, M. (eds) Scale Space and Variational Methods in Computer Vision. SSVM 2023. Lecture Notes in Computer Science, vol 14009. Springer, Cham. https://doi.org/10.1007/978-3-031-31975-4_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31975-4_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31974-7

  • Online ISBN: 978-3-031-31975-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics