Skip to main content

Automatically Segment the Left Atrium and Scars from LGE-MRIs Using a Boundary-Focused nnU-Net

  • Conference paper
  • First Online:
Left Atrial and Scar Quantification and Segmentation (LAScarQS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13586))

Included in the following conference series:

Abstract

Atrial fibrillation (AF) is the most common cardiac arrhythmia. Accurate segmentation of the left atrial (LA) and LA scars can provide valuable information to predict treatment outcomes in AF. In this paper, we proposed to automatically segment LA cavity and quantify LA scars with late gadolinium enhancement Magnetic Resonance Imagings (LGE-MRIs). We adopted nnU-Net as the baseline model and exploited the importance of LA boundary characteristics with the TopK loss as the loss function. Specifically, a focus on LA boundary pixels is achieved during training, which provides a more accurate boundary prediction. On the other hand, a distance map transformation of the predicted LA boundary is regarded as an additional input for the LA scar prediction, which provides marginal constraint on scar locations. We further designed a novel uncertainty-aware module (UAM) to produce better results for predictions with high uncertainty. Experiments on the LAScarQS 2022 dataset demonstrated our model’s superior performance on the LA cavity and LA scar segmentation. Specifically, we achieved 88.98% and 64.08% Dice coefficient for LA cavity and scar segmentation, respectively. We will make our implementation code public available at https://github.com/level6626/Boundary-focused-nnU-Net.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alom, M.Z., Yakopcic, C., Hasan, M., Taha, T.M., Asari, V.K.: Recurrent residual U-Net for medical image segmentation. J. Med. Imaging 6(1), 014006 (2019)

    Article  Google Scholar 

  2. Cheng, B., Girshick, R., Dollár, P., Berg, A.C., Kirillov, A.: Boundary IoU: improving object-centric image segmentation evaluation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15334–15342 (2021)

    Google Scholar 

  3. Chung, M.K., Eckhardt, L.L., Chen, L.Y., Ahmed, H.M., Gopinathannair, R., Joglar, J.A., Noseworthy, P.A., Pack, Q.R., Sanders, P., Trulock, K.M., et al.: Lifestyle and risk factor modification for reduction of atrial fibrillation: a scientific statement from the American heart association. Circulation 141(16), e750–e772 (2020)

    Article  Google Scholar 

  4. Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., Pal, C.: The importance of skip connections in biomedical image segmentation. In: Carneiro, G., Mateus, D., Peter, L., Bradley, A., Tavares, J.M.R.S., Belagiannis, V., Papa, J.P., Nascimento, J.C., Loog, M., Lu, Z., Cardoso, J.S., Cornebise, J. (eds.) LABELS/DLMIA -2016. LNCS, vol. 10008, pp. 179–187. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46976-8_19

    Chapter  Google Scholar 

  5. Isensee, F., et al.: nnu-net: self-adapting framework for u-net-based medical image segmentation. arXiv preprint arXiv:1809.10486 (2018)

  6. Kervadec, H., Bouchtiba, J., Desrosiers, C., Granger, E., Dolz, J., Ayed, I.B.: Boundary loss for highly unbalanced segmentation. In: International Conference on Medical Imaging with Deep Learning, pp. 285–296. PMLR (2019)

    Google Scholar 

  7. Li, L., Wu, F., Yang, G., Xu, L., Wong, T., Mohiaddin, R., Firmin, D., Keegan, J., Zhuang, X.: Atrial scar quantification via multi-scale CNN in the graph-cuts framework. Med. Image Anal. 60, 101595 (2020)

    Article  Google Scholar 

  8. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: AtrialGeneral: domain generalization for left atrial segmentation of multi-center LGE MRIs. In: de Bruijne, M., Cattin, P.C., Cotin, S., Padoy, N., Speidel, S., Zheng, Y., Essert, C. (eds.) MICCAI 2021. LNCS, vol. 12906, pp. 557–566. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87231-1_54

    Chapter  Google Scholar 

  9. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: Atrialjsqnet: a new framework for joint segmentation and quantification of left atrium and scars incorporating spatial and shape information. Med. Image Anal. 76, 102303 (2022)

    Article  Google Scholar 

  10. Li, L., Zimmer, V.A., Schnabel, J.A., Zhuang, X.: Medical image analysis on left atrial LGE MRI for atrial fibrillation studies: a review. Medical Image Analysis, p. 102360 (2022)

    Google Scholar 

  11. Ma, J., Chen, J., Ng, M., Huang, R., Li, Y., Li, C., Yang, X., Martel, A.L.: Loss odyssey in medical image segmentation. Med. Image Anal. 71, 102035 (2021)

    Article  Google Scholar 

  12. Meng, Y., et al.: Shape-aware weakly/semi-supervised optic disc and cup segmentation with regional/marginal consistency. In: Wang, L., Dou, Q., Fletcher, P.T., Speidel, S., Li, S. (eds.) MICCAI 2022. LNCS, vol. 13434. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-16440-8_50

  13. Meng, Y., Meng, W., Gao, D., Zhao, Y., Yang, X., Huang, X., Zheng, Y.: Regression of instance boundary by aggregated CNN and GCN. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12353, pp. 190–207. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58598-3_12

    Chapter  Google Scholar 

  14. Meng, Y., Wei, M., Gao, D., Zhao, Y., Yang, X., Huang, X., Zheng, Y.: CNN-GCN aggregation enabled boundary regression for biomedical image segmentation. In: Martel, A.L., Abolmaesumi, P., Stoyanov, D., Mateus, D., Zuluaga, M.A., Zhou, S.K., Racoceanu, D., Joskowicz, L. (eds.) MICCAI 2020. LNCS, vol. 12264, pp. 352–362. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-59719-1_35

    Chapter  Google Scholar 

  15. Meng, Y., et al.: BI-GCN: boundary-aware input-dependent graph convolution network for biomedical image segmentation. In: 32nd British Machine Vision Conference: BMVC 2021. British Machine Vision Association (2021)

    Google Scholar 

  16. Meng, Y., et al.: Dual consistency enabled weakly and semi-supervised optic disc and cup segmentation with dual adaptive graph convolutional networks. IEEE Trans. Med. Imaging in press (2022)

    Google Scholar 

  17. Meng, Y., Zhang, H., Zhao, Y., Yang, X., Qian, X., Huang, X., Zheng, Y.: Spatial uncertainty-aware semi-supervised crowd counting. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 15549–15559 (2021)

    Google Scholar 

  18. Meng, Y., Zhang, H., Zhao, Y., Yang, X., Qiao, Y., MacCormick, I.J., Huang, X., Zheng, Y.: Graph-based region and boundary aggregation for biomedical image segmentation. IEEE Trans. Med. Imaging 41(3), 690–701 (2021)

    Article  Google Scholar 

  19. Oktay, O., et al.: Attention U-net: learning where to look for the pancreas. arXiv preprint arXiv:1804.03999 (2018)

  20. Ranjan, R., et al.: Gaps in the ablation line as a potential cause of recovery from electrical isolation and their visualization using MRI. Circulation: Arrhythmia Electrophysiology 4(3), 279–286 (2011)

    Google Scholar 

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Shannon, C.E.: A mathematical theory of communication. ACM SIGMOBILE Mobile Comput. Commun. Rev. 5(1), 3–55 (2001)

    Article  MathSciNet  Google Scholar 

  23. Siebermair, J., Kholmovski, E.G., Marrouche, N.: Assessment of left atrial fibrosis by late gadolinium enhancement magnetic resonance imaging: methodology and clinical implications. JACC: Clin. Electrophysiology 3(8), 791–802 (2017)

    Google Scholar 

  24. Wu, Z., Shen, C., Hengel, A.v.d.: Bridging category-level and instance-level semantic image segmentation. arXiv preprint arXiv:1605.06885 (2016)

  25. Yang, G., Chen, J., Gao, Z., Li, S., Ni, H., Angelini, E., Wong, T., Mohiaddin, R., Nyktari, E., Wage, R., et al.: Simultaneous left atrium anatomy and scar segmentations via deep learning in multiview information with attention. Futur. Gener. Comput. Syst. 107, 215–228 (2020)

    Article  Google Scholar 

  26. Yang, G., et al.: A fully automatic deep learning method for atrial scarring segmentation from late gadolinium-enhanced mri images. In: 2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 844–848. IEEE (2017)

    Google Scholar 

  27. Yang, X., Wang, N., Wang, Y., Wang, X., Nezafat, R., Ni, D., Heng, P.-A.: Combating uncertainty with novel losses for automatic left atrium segmentation. In: Pop, M., Sermesant, M., Zhao, J., Li, S., McLeod, K., Young, A., Rhode, K., Mansi, T. (eds.) STACOM 2018. LNCS, vol. 11395, pp. 246–254. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-12029-0_27

    Chapter  Google Scholar 

  28. Zhao, Z., Puybareau, E., Boutry, N., Géraud, T.: Do not treat boundaries and regions differently: An example on heart left atrial segmentation. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 7447–7453. IEEE (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yalin Zheng .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 1371 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, Y., Meng, Y., Zheng, Y. (2023). Automatically Segment the Left Atrium and Scars from LGE-MRIs Using a Boundary-Focused nnU-Net. In: Zhuang, X., Li, L., Wang, S., Wu, F. (eds) Left Atrial and Scar Quantification and Segmentation. LAScarQS 2022. Lecture Notes in Computer Science, vol 13586. Springer, Cham. https://doi.org/10.1007/978-3-031-31778-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-31778-1_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-31777-4

  • Online ISBN: 978-3-031-31778-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics