Skip to main content

The Function of Hydrogen Sulfide in Plant Responses to Salinity and Drought: New Insights

  • Chapter
  • First Online:
Gasotransmitters Signaling in Plant Abiotic Stress

Part of the book series: Signaling and Communication in Plants ((SIGCOMM))

  • 132 Accesses

Abstract

Abiotic stresses are major concerns for agriculture all over the world as they can reduce crop production and quality, as well as agricultural sustainability. Salinity promotes plant toxicity, which slows down the entire growth and development of crop plants. Drought stress affects yield through altering critical plant metabolic processes, accounting for over 70% of potential crop yield and productivity losses globally. Approaching crop plants for more rapid and effective activation of defense mechanisms provides a technique of effectively mitigating the severe implications generated by such extreme environmental conditions. Recently, it has been discovered that hydrogen sulfide (H2S) is a key priming factor regulating a variety of physiological processes involved in plant growth and development. H2S has enormous agricultural potential and participates in abiotic stress response against salinity and drought. We give a brief description of recent literature on H2S sources, biosynthesis, and regulation inside the plant cell in this chapter. Additionally, the role of H2S in enhancing plant tolerance to salinity and drought is emphasized. The main effects of H2S on plants have been discussed, including how they affect photosynthesis, the antioxidant defense system, and plant productivity in water-scarce and salinity conditions. We reviewed the roles and underlying mechanisms of H2S-mediated modulation of salinity and drought stress in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi T, Abbasi SA (2010) Biomass energy and the environmental impacts associated with its production and utilization. Renew Sustain Energy Rev 14(3):919–937

    Article  CAS  Google Scholar 

  • Abid G, M’hamdi M, Mingeot D, Aouida M, Aroua I, Muhovski Y, Sassi K, Souissi F, Mannai K, Jebara M (2017) Effect of drought stress on chlorophyll fluorescence, antioxidant enzyme activities and gene expression patterns in faba bean (Vicia faba L.). Arch Agron Soil Sci 63(4):536–552

    Google Scholar 

  • Ahmad P, Jaleel CA, Sharma S (2010) Antioxidant defense system, lipid peroxidation, proline metabolizing enzymes and biochemical activity in two genotypes of Morus alba L. subjected to NaCl stress. Russ J Plant Physiol 57(4):509–517

    Google Scholar 

  • Ahmad P, Jeleel CA, Azooz MM, Nabi G (2009) Generation of ROS and non-enzymatic antioxidants during abiotic stress in Plants. Bot Res Intern 2(1):11–20

    CAS  Google Scholar 

  • Ahmed M, Fahad S, Ali MA, Hussain S, Tariq M, Ilyas F, Liu H (2021) Hydrogen sulfide: a novel gaseous molecule for plant adaptation to stress. J Plant Growth Regul 40(6):2485–2501

    Google Scholar 

  • Akbarimoghaddam H, Galavi M, Ghanbari A, Panjehkeh N (2011) Salinity effects on seed germination and seedling growth of bread wheat cultivars. Trakia J Sci 9(1):43–50

    Google Scholar 

  • Akhtar I, Nazir N (2013) Effect of water logging and drought stress in plants. Int J Water Res Environ Sci 2(2):34–40

    Google Scholar 

  • Almeida GM, da Silva AA, Batista PF, de Freitas Moura LM, Vital RG Costa AC (2020) Hydrogen sulfide, potassium phosphate and zinc sulfate as alleviators of drought stress in sunflower plants. Ciênc Agrotecnologia 44(1)

    Google Scholar 

  • Amir SB, Rasheed R, Ashraf MA, Hussain I, Iqbal M (2020) Hydrogen sulfide mediates defense response in safflower by regulating secondary metabolism, oxidative defense, and elemental uptake under drought. Physiol Planta 172(2):795–808

    Article  Google Scholar 

  • Angelopoulos K, Dichio B, Xiloyannis C (1996) Inhibition of photosynthesis in olive trees (Olea europaea L.) during water stress and rewatering. J Exp Bot 47(8):1093–1100

    Google Scholar 

  • Antoniou C, Xenofontos R, Chatzimichail G, Christou A, Kashfi K, Fotopoulos V (2020) Exploring the potential of nitric oxide and hydrogen sulfide (NOSH)-releasing synthetic compounds as novel priming agents against drought stress in Medicago sativa plants. Biomolecules 10(1):120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arif MS, Yasmeen T, Abbas Z, Ali S, Rizwan M, Aljarba NH, Abdel-Daim MM (2021) Role of exogenous and endogenous hydrogen sulfide (H2S) on functional traits of plants under heavy metal stresses: a recent perspective. Front Plant Sci 11:545453

    Article  PubMed  PubMed Central  Google Scholar 

  • Aroca A, Gotor C, Romero LC (2018) Hydrogen sulfide signaling in plants: emerging roles of protein persulfidation. Front Plant Sci 9:1369

    Article  PubMed  PubMed Central  Google Scholar 

  • Bahmanbiglo FA, Eshghi S (2021) The effect of hydrogen sulfide on growth, yield and biochemical responses of strawberry (Fragaria× ananassa cv. Paros) leaves under alkalinity stress. Sci Hortic 282:110013

    Google Scholar 

  • Bashir SS, Hussain A, Hussain SJ, Wani OA, Zahid Nabi S, Dar NA, Mansoor S (2021) Plant drought stress tolerance: understanding its physiological, biochemical and molecular mechanisms. Biotechnol Biotechnol Equip 35(1):1912–1925

    Article  CAS  Google Scholar 

  • Batista PF, Muller C, Merchant A, Fuentes D, de Oliveira SFR, da Silva FB, Costa AC (2020) Biochemical and physiological impacts of zinc sulphate, potassium phosphite and hydrogen sulphide in mitigating stress conditions in soybean. Physiol Plant 168(2):456–472

    CAS  PubMed  Google Scholar 

  • Bhargava S, Sawant K (2013) Drought stress adaptation: metabolic adjustment and regulation of gene expression. Plant Breed 132(1):21–32

    Article  CAS  Google Scholar 

  • Brito C, Dinis LT, Moutinho-Pereira J, Correia CM (2019) Drought stress effects and olive tree acclimation under a changing climate. Plants 8(7):232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brodersen CR, Roddy AB, Wason JW, McElrone AJ (2019) Functional status of xylem through time. Annu Rev Plant Biol 70(1):407–433

    Article  CAS  PubMed  Google Scholar 

  • Chen J, Shang YT, Wang WH, Chen XY, He EM, Zheng HL, Shangguan Z (2016) Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front Plant Sci 7:1173

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Wang WH, Wu FH, He EM, Liu X, Shangguan ZP, Zheng HL (2015) Hydrogen sulfide enhances salt tolerance through nitric oxide-mediated maintenance of ion homeostasis in barley seedling roots. Sci Rep 5(1):1–19

    Google Scholar 

  • Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, Zheng HL (2011) Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot 62(13):4481–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chokshi K, Pancha I, Ghosh A, Mishra S (2017) Salinity induced oxidative stress alters the physiological responses and improves the biofuel potential of green microalgae Acutodesmus dimorphus. Bioresour Technol 244:1376–1383

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury JA, Karim MA, Khaliq QA, Ahmed AU (2017) Effect of drought stress on bio-chemical change and cell membrane stability of soybean genotypes. Bangladesh J Agric Res 42(3):475–485

    Article  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64(7):1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chutipaijit S, Cha-um S, Sompornpailin K (2011) High contents of proline and anthocyaninincrease protective response to salinity in Oryza sativa L. spp. indica. Aust J Crop Sci 5(10):1191–1198

    Google Scholar 

  • Corpas FJ, Barroso JB, González-Gordo S, Muñoz-Vargas MA, Palma JM (2019) Hydrogen sulfide: a novel component in Arabidopsis peroxisomes which triggers catalase inhibition. J Integr Plant Biol 61(7):871–883

    CAS  PubMed  Google Scholar 

  • Cuéllar T, Pascaud F, Verdeil JL, Torregrosa L, Adam-Blondon AF, Thibaud JB, Sentenac H, Gaillard I (2010) A grapevine Shaker inward K(+) channel activated by the calcineurin B-like calcium sensor 1-protein kinase CIPK23 network is expressed in grape berries under drought stress conditions. Plant J 61(1):58–69

    Article  PubMed  Google Scholar 

  • Da Silva EC, Nogueira RJMC, da Silva MA, de Albuquerque MB (2011) Drought stress and plant nutrition. Plant Stress 5(1):32–41

    Google Scholar 

  • Da Silva CJ, Fontes EPB, Modolo LV (2017) Salinity-induced accumulation of endogenous H2S and NO is associated with modulation of the antioxidant and redox defense systems in Nicotiana tabacum L. cv. Havana. Plant Sci 256:148–159

    Article  PubMed  Google Scholar 

  • Dantas BF, De Sa RL, Aragao CA (2007) Germination, initial growth and cotyledon protein content of bean cultivars under salinity stress. Rev Bras De Sementes 29:106–110

    Article  Google Scholar 

  • Da-Silva CJ, Mollica DC, Vicente MH, Peres LE, Modolo LV (2018) NO, hydrogen sulfide does not come first during tomato response to high salinity. Nitric Oxide 76:164–173

    Article  CAS  PubMed  Google Scholar 

  • Deepak SB, Thakur A, Singh S, Bakshi M, Bansal S (2019) Changes in crop physiology under drought stress: a review. J Pharmacogn Phytochem 8:1251–1253

    Google Scholar 

  • Deka D, Singh AK, Singh AK (2018) Effect of drought stress on crop plants with special reference to drought avoidance and tolerance mechanisms: a review. Int J Curr Microbiol App Sci 7:2703–2721

    Article  CAS  Google Scholar 

  • Deng YQ, Bao J, Yuan F, Liang X, Feng ZT, Wang BS (2016) Exogenous hydrogen sulfide alleviates salt stress in wheat seedlings by decreasing Na+ content. Plant Growth Regul 79(3):391–399

    Article  CAS  Google Scholar 

  • Ding H, Ma D, Huang X, Hou J, Wang C, Xie Y (2019) Exogenous hydrogen sulfide alleviates salt stress by improving antioxidant defenses and the salt overly sensitive pathway in wheat seedlings. Acta Physiol Plant 41:1–11

    Article  Google Scholar 

  • Ekinci M, Yildirim E, Turan M (2021) Ameliorating effects of hydrogen sulfide on growth, physiological and biochemical characteristics of eggplant seedlings under salt stress. S Afr J Bot 143:79–89

    Article  CAS  Google Scholar 

  • Fang H, Liu Z, Jin Z, Zhang L, Liu D, Pei Y (2016) An emphasis of hydrogen sulfide-cysteine cycle on enhancing the tolerance to chromium stress in Arabidopsis. Environ Pollut 213:870–877

    Article  CAS  PubMed  Google Scholar 

  • Farooq M, Wahid A, Kobayashi N, Fujita D, Basra S (2009) Plant drought stress: effects, mechanisms and management. Sustainable agriculture. Springer, Dordrecht, pp 153–188

    Chapter  Google Scholar 

  • Fernández-Torquemada Y, Sánchez-Lizaso JL (2013) Effects of salinity on seed germination and early seedling growth of the Mediterranean seagrass Posidonia oceanica (L.) Delile. Estuarine Coastal Shelf Sci 119:64–70

    Article  Google Scholar 

  • Fichman Y, Miller G, Mittler R (2019) Whole-plant live imaging of reactive oxygen species. Mol Plant 12(9):1203–1210

    Article  CAS  PubMed  Google Scholar 

  • Garcı́a-Mata C, Lamattina L (2001) Nitric oxide induces stomatal closure and enhances the adaptive plant responses against drought stress. Plant Physiol 126(3):1196–1204

    Google Scholar 

  • Garcia-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188(4):977–984

    Article  CAS  PubMed  Google Scholar 

  • Gautam H, Fatma M, Sehar Z, Mir IR Khan NA (2022) Hydrogen sulfide, ethylene and nitric oxide regulate redox homeostasis and protect photosynthetic metabolism under high temperature stress in rice plants. Antioxid 11: 1478

    Google Scholar 

  • Gharibi S, Tabatabaei BES, Saeidi G, Goli SAH (2016) Effect of drought stress on total phenolic, lipid peroxidation, and antioxidant activity of Achillea species. Appl Biochem Biotechnol 178(4):796–809

    Article  CAS  PubMed  Google Scholar 

  • Goyal V, Jhanghel D, Mehrotra S (2021) Emerging warriors against salinity in plants: nitric oxide and hydrogen sulphide. Physiol Plant 171(4):896–908

    Article  CAS  PubMed  Google Scholar 

  • Gurumurthy S, Sarkar B, Vanaja M, Lakshmi J, Yadav S, Maheswari M (2019) Morpho-physiological and biochemical changes in black gram (Vigna mungo L. Hepper) genotypes under drought stress at flowering stage. Acta Physiol Plant 41(3):1–14

    Google Scholar 

  • Hao X, Jin Z, Wang Z, Qin W, Pei Y (2020) Hydrogen sulfide mediates DNA methylation to enhance osmotic stress tolerance in Setaria italica L. Plant Soil 453(1):355–370

    Article  CAS  Google Scholar 

  • Hasanuzzaman M, Fujita M, Islam MN, Ahamed KU, Nahar K (2009) Performance of four irrigatedrice varieties under different levels of salinity stress. Int J Integr Biol 6(2):85–90

    Google Scholar 

  • Hatzfeld Y, Maruyama A, Schmidt A, Noji M, Ishizawa K, Saito K (2000) β-Cyanoalanine synthase is a mitochondrial cysteine synthase-like protein in spinach and Arabidopsis. Plant Physiol 123(3):1163–1172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang D, Huo J, Liao W (2021) Hydrogen sulfide: roles in plant abiotic stress response and crosstalk with other signals. Plant Sci 302:110733

    Article  CAS  PubMed  Google Scholar 

  • Hussin S, Geissler N, Koyro HW (2013) Effect of NaCl salinity on Atriplex nummularia (L.) with special emphasis on carbon and nitrogen metabolism. Acta Physiol Plant 35(4):1025–1038

    Google Scholar 

  • Iyengar ERR, Reddy MP (1996) Photosynthesis in highly salt-tolerant plants. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker, New York, pp 897–909

    Google Scholar 

  • Jahan B, Rasheed F, Sehar Z, Fatma M, Iqbal N, Masood A, Khan NA (2021) Coordinated role of nitric oxide, ethylene, nitrogen, and sulfur in plant salt stress tolerance. Stresses 1(3):181–199

    Article  Google Scholar 

  • Jiang JL, Tian Y, Li L, Yu M, Hou RP, Ren XM (2019) H2S alleviates salinity stress in cucumber by maintaining the Na+/K+ balance and regulating H2S metabolism and oxidative stress response. Front Plant Sci 10:678

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y (2011) Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 414(3):481–486

    Google Scholar 

  • Jost R, Berkowitz O, Wirtz M, Hopkins L, Hawkesford MJ, Hell R (2000) Genomic and functional characterization of the OAS gene family encoding O-acetylserine (thiol) lyases, enzymes catalyzing the final step in cysteine biosynthesis in Arabidopsis thaliana. Gene 253(2):237–247

    Article  CAS  PubMed  Google Scholar 

  • Kailasa SK, Koduru JR, Vikrant K, Tsang YF, Singhal RK, Hussain CM, Kim KH (2020) Recent progress on solution and materials chemistry for the removal of hydrogen sulfide from various gas plants. J Mol Liq 297:111886

    Article  CAS  Google Scholar 

  • Kaya C, Murillo-Amador B, Ashraf M (2020) Involvement of L-cysteine desulfhydrase and hydrogen sulfide in glutathione-induced tolerance to salinity by accelerating ascorbate-glutathione cycle and glyoxalase system in capsicum. Antioxidants 9(7):603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khanna RR, Jahan B, Iqbal N, Khan NA, Al Ajmi MF, Rehman MT, Khan MIR (2021) GABA reverses salt-inhibited photosynthetic and growth responses through its influence on NO-mediated nitrogen-sulfur assimilation and antioxidant system in wheat. J Biotech 325:73–82

    Article  CAS  Google Scholar 

  • Kimura H (2014) The physiological role of hydrogen sulfide and beyond. Nitric Oxide 41:4–10

    Article  CAS  PubMed  Google Scholar 

  • Kok L, Bosma W, Maas FM, Kuiper PJC (1985) The effect of shortterm H2S fumigation on water-soluble sulphydryl and glutathione levels in spinach. Plant Cell Environ 8(3):189–194

    Article  Google Scholar 

  • Kolluru GK, Yuan S, Shen X, Kevil CG (2015) H2S regulation of nitric oxide metabolism. In Methods in enzymology, vol 554. Academic Press, pp 271–297

    Google Scholar 

  • Kolupaev YE, Firsova EN, Yastreb TO, Ryabchun NI, Kirichenko VV (2019) Effect of hydrogen sulfide donor on antioxidant state of wheat plants and their resistance to soil drought. Russ J Plant Physiol 66(1):59–66

    Article  CAS  Google Scholar 

  • Lai D, Mao Y, Zhou H, Li F, Wu M, Zhang J, Xie Y (2014) Endogenous hydrogen sulfide enhances salt tolerance by coupling the reestablishment of redox homeostasis and preventing salt-induced K+ loss in seedlings of Medicago sativa. Plant Sci 225:117–129

    Article  CAS  PubMed  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology. Springer, New York, NY, USA

    Book  Google Scholar 

  • Léon S, Touraine B, Briat JF, Lobréaux S (2002) The AtNFS2 gene from Arabidopsis thaliana encodes a NifS-like plastidial cysteine desulphurase. Biochem J 366(2):557–564

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Sun C, Huang Z, Pan J, Wang L, Fan X (2009) Mechanisms of progressive water deficit tolerance and growth recovery of Chinese maize foundation genotypes Huangzao 4 and Chang 7–2, which are proposed on the basis of comparison of physiological and transcriptomic responses. Plant Cell Physiol 50(12):2092–2111

    Article  CAS  PubMed  Google Scholar 

  • Li L, Wang Y, Shen W (2012) Roles of hydrogen sulfide and nitric oxide in the alleviation of cadmium-induced oxidative damage in alfalfa seedling roots. Biometals 25(3):617–631

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Yang SZ, Long WB, Yang GX, Shen ZZ (2013) Hydrogen sulphide may be a novel downstream signal molecule in nitric oxide‐induced heat tolerance of maize (Zea mays L.) seedlings. Plant Cell Environ 36(8):1564–1572

    Google Scholar 

  • Li J, Jia H, Wang J, Cao Q, Wen Z (2014) Hydrogen sulfide is involved in maintaining ion homeostasis via regulating plasma membrane Na+/H+ antiporter system in the hydrogen peroxide-dependent manner in salt-stress Arabidopsis thaliana root. Protoplasma 251(4):899–912

    Article  CAS  PubMed  Google Scholar 

  • Li ZG (2015) Analysis of some enzyme activities of hydrogen sulfide metabolism in plants. Meth Enzymol, vol 555. Academic Press, pp 253–269

    Google Scholar 

  • Li H, Gao MQ, Xue RL, Wnag D, Zhao HJ (2015) Effect of hydrogen sulfide on D1 protein in wheat under drought stress. Acta Physiol Planta 37(11):1–9

    Article  Google Scholar 

  • Li H, Li M, Wei X, Zhang X, Xue R, Zhao Y, Zhao H (2017) Transcriptome analysis of drought-responsive genes regulated by hydrogen sulfide in wheat (Triticum aestivum L.) leaves. Mol Genet Genom 292(5):1091–1110

    Google Scholar 

  • Li J, Shi C, Wang X, Liu C, Ding X, Ma P, Jia H (2020) Hydrogen sulfide regulates the activity of antioxidant enzymes through persulfidation and improves the resistance of tomato seedling to copper oxide nanoparticles (CuO NPs)-induced oxidative stress. Plant Physiol Biochem 156:257–266

    Article  CAS  PubMed  Google Scholar 

  • Li H, Yu TT, Ning YS, Li H, Zhang WW, Yang HQ (2021) Hydrogen sulfide alleviates alkaline salt stress by regulating the expression of microRNAs in Malus hupehensis Rehd. roots. Front Plant Sci 12

    Google Scholar 

  • Liu H, Wang J, Liu J, Liu T, Xue S (2021) Hydrogen sulfide (H2S) signaling in plant development and stress responses. aBiotech 2(1):32–63

    Google Scholar 

  • Ma D, Ding H, Wang C, Qin H, Han Q, Hou J, Guo T (2016) Alleviation of drought stress by hydrogen sulfide is partially related to the abscisic acid signaling pathway in wheat. PLoS ONE 11(9):e0163082

    Article  PubMed  PubMed Central  Google Scholar 

  • Maleki M, Ebrahimzade H, Gholami M, Niknam V(2011) The effect of drought stress and exogenous abscisic acid on growth, protein content and antioxidative enzyme activity in saffron (Crocus sativus L.). Afr J Biotechnol 10(45):9068–9075

    Google Scholar 

  • Mane AV, Karadge BA, Samant JS (2010) Salinity induced changes in photosynthetic pigments and polyphenols of Cymbopogon nardus (L.) Rendle. J Chem Pharm Res 2(3):338–347

    Google Scholar 

  • Min Y, Qin BP, Wang P, Li ML, Chen LL, Chen LT, Yin YP (2016) Foliar application of sodium hydrosulfide (NaHS), a hydrogen sulfide (H2S) donor, can protect seedlings against heat stress in wheat (Triticum aestivum L.). J Integr Agric 15(12):2745–2758

    Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity upregulates the antioxidative system in rootmitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55(399):1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Mostofa MG, Saegusa D, Fujita M, Tran LSP (2015) Hydrogen sulfide regulates salt tolerance in rice by maintaining Na+/K+ balance, mineral homeostasis and oxidative metabolism under excessive salt stress. Front Plant Sci 6:1055

    Article  PubMed  PubMed Central  Google Scholar 

  • Munns R (1993) Physiological processes limiting plant growth in saline soil: some dogmas and hypotheses. Plant Cell Environ 16(1):15–24

    Article  CAS  Google Scholar 

  • Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167(3):645–663

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651

    Article  CAS  PubMed  Google Scholar 

  • Osuagwu GGE, Edeoga HO, Osuagwu AN (2010) The influence of water stress (drought) on the mineral and vitamin potential of the leaves of Ocimum gratissimum (L). Recent Res Sci Technol 2(2):27–33

    CAS  Google Scholar 

  • Parihar P, Singh S, Singh R, Singh VP, Prasad SM (2015) Effect of salinity stress on plants and its tolerance strategies: a review. Environ Sci Pollut Res 22(6):4056–4075

    Article  CAS  Google Scholar 

  • Park HJ, Kim WY, Yun DJ (2016) A new insight of salt stress signaling in plant. Mol Cell 39(6):447

    Article  CAS  Google Scholar 

  • Piotr S, Grazyna K (2005) Antioxidant defense in the leaves of C3 and C4 plants under salinity stress. Physiol Plant 125(1):31–40

    Article  Google Scholar 

  • Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Noble AD (2014) Economics of salt-induced land degradation and restoration. In Natural Resources Forum 38:282–295

    Article  Google Scholar 

  • Queiroz MS, Oliveira CES, Steiner F, Zuffo AM, Zoz T, Vendruscolo EP, Menis VS, Mello BFFR, Cabral RC, Menis TF (2019) Drought stresses on seed germination and early growth of maize and sorghum. J Agric Sci 11(2):310–318

    Google Scholar 

  • Raju AD, Prasad SM (2021) Hydrogen sulfide implications on easing NaCl induced toxicity in eggplant and tomato seedlings. Plant Physiol Biochem 164:173–184

    Article  CAS  PubMed  Google Scholar 

  • Riemenschneider A, Nikiforova V, Hoefgen R, De Kok LJ, Papenbrock J (2005) Impact of elevated H2S on metabolite levels, activity of enzymes and expression of genes involved in cysteine metabolism. Plant Physiol Biochem 43(5):473–483

    Article  CAS  PubMed  Google Scholar 

  • Rivero RM, Mestre TC, Mittler RON, Rubio F, Garcia-Sanchez F, Martinez V (2014) The combined effect of salinity and heat reveals a specific physiological, biochemical and molecular response in tomato plants. Plant Cell Environ 37(5):1059–1073

    Article  CAS  PubMed  Google Scholar 

  • Riyazuddin R, Verma R, Singh K, Nisha N, Keisham M, Bhati KK, Gupta R (2020) Ethylene: a master regulator of salinity stress tolerance in plants. Biomolecules 10(6):959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rozeff N (1995) Sugarcane and salinity—a review paper. Sugarcane, pp 8–19. United Kingdom

    Google Scholar 

  • Saha P, Chatterjee P, Biswas AK (2010) NaCl pretreatment alleviates salt stress by enhancement of antioxidant defense system and osmolyte accumulation in mungbean (Vigna radiate L.Wilczek). Indian J Exp Biol 48(6):593–600

    Google Scholar 

  • Sairam RK, Deshmukh PS, Saxena DC (1998) Role of antioxidant systems in wheat genotypes tolerance to water stress. Biol Plant 41(3):387–394

    Article  CAS  Google Scholar 

  • Salehi-Lisar SY, Bakhshayeshan-Agdam H (2016) Drought stress in plants: causes, consequences, and tolerance. In Drought stress tolerance in plants. Springer, Cham, Switzerland

    Google Scholar 

  • Samarah N, Mullen R, Cianzio S (2004) Size distribution and mineral nutrients of soybean seeds in response to drought stress. J Plant Nutr 27(5):815–835

    Article  CAS  Google Scholar 

  • Sehar Z, Iqbal N, Khan MIR, Masood A, Rehman M, Hussain A, Khan NA (2021) Ethylene reduces glucose sensitivity and reverses photosynthetic repression through optimization of glutathione production in salt-stressed wheat (Triticum aestivum L.). Sci Rep 11(1):1–12

    Google Scholar 

  • Sehar Z, Gautam H, Iqbal N, Alvi AF, Jahan B, Fatma M, Albaqami M, Khan NA (2022) The functional interplay between ethylene, hydrogen sulfide and sulfur in plant heat stress tolerance. Biomolecules 12: 678

    Google Scholar 

  • Semiz GD, Ünlukara A, Yurtseven E, Suarez DL, Telci I (2012) Salinity impact on yield, water use,mineral and essential oil content of fennel (Foeniculum vulgare Mill.). J Agric Sci 18(3):177–186

    Google Scholar 

  • Sengupta S, Majumder AL (2009) Insight into the salt tolerance factors of a wild halophytic rice Porteresia coarctata: a physiological and proteomic approach. Planta 229(4):911–929

    Article  CAS  PubMed  Google Scholar 

  • Shakeel AA, Xiao-yu X, Long-chang W, Muhammad FS, Chen M, Wang L (2011) Morphological, physiological and biochemical responses of plants to drought stress. Afr J Agric Res 6(9):2026–2032

    Google Scholar 

  • Shan C, Liu H, Zhao L, Wang X (2014) Effects of exogenous hydrogen sulfide on the redox states of ascorbate and glutathione in maize leaves under salt stress. Biol Plant 58(1):169–173

    Article  CAS  Google Scholar 

  • Shan C, Zhang S, Ou X (2018) The roles of H2S and H2O2 in regulating AsA-GSH cycle in the leaves of wheat seedlings under drought stress. Protoplasma 255(4):1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Shan CJ, Zhang SL, Li DF, Zhao YZ, Tian XL, Zhao XL, Liu RQ (2011) Effects of exogenous hydrogen sulfide on the ascorbate and glutathione metabolism in wheat seedlings leaves under water stress. Acta Physiol Plant 33(6):2533–2540

    Article  CAS  Google Scholar 

  • Shen J, Xing T, Yuan H, Liu Z, Jin Z, Zhang L, Pei Y (2013) Hydrogen sulfide improves drought tolerance in Arabidopsis thaliana by micro-RNA expressions. PLoS ONE 8(10):e77047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Ye T, Chan Z (2013) Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermudagrass (Cynodon dactylon (L). Pers.). Plant Physiol Biochem 71:226–234

    Article  CAS  PubMed  Google Scholar 

  • Shivaraj SM, Vats S, Bhat JA, Dhakte P, Goyal V, Khatri P, Deshmukh R (2020) Nitric oxide and hydrogen sulfide crosstalk during heavy metal stress in plants. Physiol Plant 168(2):437–455

    Google Scholar 

  • Smith S, De Smet I (2012) Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc B 367(1595):1441–1452

    Article  CAS  Google Scholar 

  • Somerville C, Briscoe J (2001) Genetic engineering and water. Science 292(5525):2217–2217

    Article  CAS  PubMed  Google Scholar 

  • Srivastava V, Chowdhary AA, Verma PK, Mehrotra S, Mishra S (2022) Hydrogen sulfide-mediated mitigation and its integrated signaling crosstalk during salinity stress. Physiol Plant 174(1):13633

    Article  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar-Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  PubMed  Google Scholar 

  • Vikrant K, Kailasa SK, Tsang DC, Lee SS, Kumar P, Giri BS, Kim KH (2018) Biofiltration of hydrogen sulfide: trends and challenges. J Clean Prod 187:131–147

    Article  CAS  Google Scholar 

  • Wang BL, Shi L, Li YX, Zhang WH (2010) Boron toxicity is alleviated by hydrogen sulfide in cucumber (Cucumis sativus L.) seedlings. Planta 231(6):1301–1309

    Google Scholar 

  • Wang Y, Li L, Cui W, Xu S, Shen W, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351(1):107–119

    Article  CAS  Google Scholar 

  • Wei GQ, Zhang WW, Cao H, Yue SS, Li P, Yang HQ (2019) Effects hydrogen sulfide on the antioxidant system and membrane stability in mitochondria of Malus hupehensis under NaCl stress. Biol Plant 63:228–236

    Article  CAS  Google Scholar 

  • Wei MY, Liu JY, Li H, Hu WJ, Shen ZJ, Qiao F, Zheng HL (2021) Proteomic analysis reveals the protective role of exogenous hydrogen sulfide against salt stress in rice seedlings. Nitric Oxide 111:14–30

    Article  PubMed  Google Scholar 

  • Yamaguchi Y, Nakamura T, Kusano T, Sano H (2000) Three Arabidopsis genes encoding proteins with differential activities for cysteine synthase and β-cyanoalanine synthase. Plant Cell Physiol 41(4):465–476

    Article  CAS  PubMed  Google Scholar 

  • Ye SC, Hu LY, Hu KD, Li YH, Yan H, Zhang XQ, Zhang H (2015) Hydrogen sulfide stimulates wheat grain germination and counteracts the effect of oxidative damage caused by salinity stress. Cereal Res Commun 43(2):213–224

    Article  CAS  Google Scholar 

  • Yu LX, Zhang CJ, Shang HQ, Wang XF, Min WEI, Yang FJ, Shi QH (2013) Exogenous hydrogen sulfide enhanced antioxidant capacity, amylase activities and salt tolerance of cucumber hypocotyls and radicles. J Integr Agric 12(3):445–456

    Article  Google Scholar 

  • Zare M, Azizi MH, Bazrafshan F (2011) Effect of drought stress on some agronomic traits in ten barley (Hordeum vulgare L.) cultivars. Tech J Eng Appl Sci 1(3):57–62

    Google Scholar 

  • Zhang MH, Qin ZH, Liu X (2005) Remote sensed spectral imagery to detect late blight in field tomatoes. Precis Agric 6(6):489–508

    Article  Google Scholar 

  • Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY, Hu LY (2009) Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J Integr Plant Biol 51(12):1086–1094

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Jiao H, Jiang CX, Wang SH, Wei ZJ, Luo JP et al (2010a) Hydrogen sulfide protects soybean seedlings against drought induced oxidative stress. Acta Physiol Plant 32(5):849–857

    Article  CAS  Google Scholar 

  • Zhang H, Wang MJ, Hu LY, Wang SH, Hu KD, Bao LJ, Luo JP (2010b) Hydrogen sulfide promotes wheat seed germination under osmotic stress. Russ J Plant Physiol 57(4):532–539

    Article  CAS  Google Scholar 

  • Zhao N, Zhu H, Zhang H, Sun J, Zhou J, Deng C, Chen S (2018) Hydrogen sulfide mediates K+ and Na+ homeostasis in the roots of salt-resistant and salt-sensitive poplar species subjected to NaCl stress. Front Plant Sci 9:1366

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou H, Chen Y, Zhai F, Zhang J, Zhang F, Yuan X, Xie Y (2020) Hydrogen sulfide promotes rice drought tolerance via reestablishing redox homeostasis and activation of ABA biosynthesis and signaling. Plant Physiol Biochem 155:213–220

    Article  CAS  PubMed  Google Scholar 

  • Ziska LH, Bunce JA, Shimono H, Gealy DR, Baker JT, Newton PC, Wilson LT (2012) Food security and climate change: on the potential to adapt global crop production by active selection to rising atmospheric carbon dioxide. Proc R Soc B Biol Sci 279(1745):4097–4105

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nafees A. Khan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gautam, H., Khan, S., Alvi, A.F., Khan, N.A. (2023). The Function of Hydrogen Sulfide in Plant Responses to Salinity and Drought: New Insights. In: Fatma, M., Sehar, Z., Khan, N.A. (eds) Gasotransmitters Signaling in Plant Abiotic Stress. Signaling and Communication in Plants. Springer, Cham. https://doi.org/10.1007/978-3-031-30858-1_8

Download citation

Publish with us

Policies and ethics