Skip to main content

Efficient Execution of Blockchain Transactions Through Deterministic Concurrency Control

  • Conference paper
  • First Online:
Database Systems for Advanced Applications (DASFAA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13943))

Included in the following conference series:

  • 2022 Accesses

Abstract

Concurrently executing Blockchain transactions can make good use of modern hardware and improve system performance. Recent works mainly utilize a dependency graph to represent the partial order among conflicting transactions. All participants can then execute the transactions concurrently according to an identical order and keep consistent with each other. However generating dependency graphs is quite time-consuming, and during this process some transactions have to be re-executed multiple times. In this paper, we adopt deterministic concurrency control to quickly compute the partial order. Instead of one large graph, we partition the transactions into a sequence of batches. In this way, there is no need to deal with the inter-batch conflicts in finding the partial order. We also propose a two stage approach (DVC) to find a partial order with high degree of parallelism. DVC does not need to re-execute transactions, and can find an approximate optimal partial order by solving an equivalent MinVWC problem. We integrate the proposed techniques into an open-source system and compare them with several advanced solutions. As shown by the experimental results, our approaches can significantly reduce the costs of computing the partial order and obtain a schedule of high parallelism degree.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://tendermint.com/

  2. 2.

    http://www.nscc-gz.cn/

References

  1. Dickerson, T., Gazzillo, P., Herlihy, M., Koskinen, E.: Adding concurrency to smart contracts. In: Proceedings of the ACM Symposium on Principles of Distributed Computing. PODC 2017 (2017)

    Google Scholar 

  2. Anjana, P.S., Attiya, H., Kumari, S., Peri, S., Somani, A.: Efficient concurrent execution of smart contracts in blockchains using object-based transactional memory. In: Networked Systems, pp. 77–93 (2021)

    Google Scholar 

  3. Zhang, A., Zhang, K.: Enabling concurrency on smart contracts using multiversion ordering. In: Cai, Y., Ishikawa, Y., Xu, J. (eds.) APWeb-WAIM 2018. LNCS, vol. 10988, pp. 425–439. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96893-3_32

    Chapter  Google Scholar 

  4. Jin, C., Pang, S., Qi, X., Zhang, Z., Zhou, A.: A high performance concurrency protocol for smart contracts of permissioned blockchain. IEEE Trans. Knowl. Data Eng. 34, 1–1 (2021)

    Google Scholar 

  5. Li, Y., et al.: Fastblock: Accelerating blockchains via hardware transactional memory. In: 2021 IEEE 41st International Conference on Distributed Computing Systems (ICDCS) (2021)

    Google Scholar 

  6. Bartoletti, M., Galletta, L., Murgia, M.: A true concurrent model of smart contracts executions. In: Bliudze, S., Bocchi, L. (eds.) COORDINATION 2020. LNCS, vol. 12134, pp. 243–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50029-0_16

    Chapter  Google Scholar 

  7. Baheti, S., Anjana, P.S., Peri, S., Simmhan, Y.: DiPETrans: a framework for distributed parallel execution of transactions of blocks in blockchains. Concurrency Comput. Pract. Experience 34(10), e6804 (2022)

    Google Scholar 

  8. Amiri, M.J., Agrawal, D., El Abbadi, A.: Parblockchain: Leveraging transaction parallelism in permissioned blockchain systems. In: 2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS), pp. 1337–1347 (2019)

    Google Scholar 

  9. Fang, M., Zhang, Z., Jin, C., Zhou, A.: High-performance smart contracts concurrent execution for permissioned blockchain using SGX. In: 2021 IEEE 37th International Conference on Data Engineering (ICDE), pp. 1907–1912 (2021)

    Google Scholar 

  10. Lu, Y., Yu, X., Cao, L., Madden, S.: Aria: a fast and practical deterministic OLTP database. Proc. VLDB Endow. 13(12), 2047–2060 (2020)

    Article  Google Scholar 

  11. Wang, Y., Cai, S., Pan, S., Li, X., Yin, M.: Reduction and local search for weighted graph coloring problem. In: Proceedings of the Thirty-Fourth AAAI Conference on Artificial Intelligence, pp. 2433–2441. AAAI 2020 (2020)

    Google Scholar 

  12. Peng, Z., et al.: Neuchain: a fast permissioned blockchain system with deterministic ordering. Proc. VLDB Endow. 15(11), 2585–2598 (2022)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by National Key R &D Program of China (2022YFB2702100), National Science Foundation of China (U1911203).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinchuan Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, H., Chen, J., Ma, N., Huang, J., Du, X. (2023). Efficient Execution of Blockchain Transactions Through Deterministic Concurrency Control. In: Wang, X., et al. Database Systems for Advanced Applications. DASFAA 2023. Lecture Notes in Computer Science, vol 13943. Springer, Cham. https://doi.org/10.1007/978-3-031-30637-2_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30637-2_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30636-5

  • Online ISBN: 978-3-031-30637-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics