Skip to main content

Short Signatures from Regular Syndrome Decoding in the Head

  • Conference paper
  • First Online:
Advances in Cryptology – EUROCRYPT 2023 (EUROCRYPT 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14008))

Abstract

We introduce a new candidate post-quantum digital signature scheme from the regular syndrome decoding (RSD) assumption, an established variant of the syndrome decoding assumption which asserts that it is hard to find \(w \)-regular solutions to systems of linear equations over \(\mathbb {F}_2\) (a vector is regular if it is a concatenation of \(w \) unit vectors). Our signature is obtained by introducing and compiling a new 5-round zero-knowledge proof system constructed using the MPC-in-the-head paradigm. At the heart of our result is an efficient MPC protocol in the preprocessing model that checks correctness of a regular syndrome decoding instance by using a share ring-conversion mechanism.

The analysis of our construction is non-trivial and forms a core technical contribution of our work. It requires careful combinatorial analysis and combines several new ideas, such as analyzing soundness in a relaxed setting where a cheating prover is allowed to use any witness sufficiently close to a regular vector. We complement our analysis with an in-depth overview of existing attacks against RSD.

Our signatures are competitive with the best-known code-based signatures, ranging from 12.52 KB (fast setting, with signing time of the order of a few milliseconds on a single core of a standard laptop) to about 9 KB (short setting, with estimated signing time of the order of 15 ms).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://csrc.nist.gov/projects/post-quantum-cryptography.

  2. 2.

    https://bench.cr.yp.to/results-hash.html.

References

  1. Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST), FIPS PUB 197, U.S. Department of Commerce (2001)

    Google Scholar 

  2. Aragon, N., Blazy, O., Gaborit, P., Hauteville, A., Zémor, G.: Durandal: a rank metric based signature scheme. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 728–758. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4_25

    Chapter  Google Scholar 

  3. Augot, D., Finiasz, M., Sendrier, N.: A fast provably secure cryptographic hash function. Cryptology ePrint Archive, Report 2003/230 (2003). https://eprint.iacr.org/2003/230

  4. Baum, C., Damgård, I., Larsen, K., Nielsen, M.: How to prove knowledge of small secrets (2016). https://eprint.iacr.org/2016/538

  5. Baum, C., de Saint Guilhem, C.D., Kales, D., Orsini, E., Scholl, P., Zaverucha, G.: Banquet: short and fast signatures from AES. In: Garay, J.A. (ed.) PKC 2021. LNCS, vol. 12710, pp. 266–297. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75245-3_11

    Chapter  Google Scholar 

  6. Bellare, M., Goldreich, O.: On defining proofs of knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-48071-4_28

    Chapter  Google Scholar 

  7. Bernstein, D.J., Lange, T., Peters, C., Schwabe, P.: Really fast syndrome-based hashing. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 134–152. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21969-6_9

    Chapter  Google Scholar 

  8. Beullens, W.: Sigma protocols for MQ, PKP and SIS, and fishy signature schemes. In: Canteaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12107, pp. 183–211. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45727-3_7

    Chapter  Google Scholar 

  9. Bidoux, L., Gaborit, P., Kulkarni, M., Mateu, V.: Code-based signatures from new proofs of knowledge for the syndrome decoding problem. arXiv preprint arXiv:2201.05403 (2022)

  10. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y.: Compressing vector OLE. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 896–912. ACM Press (2018)

    Google Scholar 

  11. Boyle, E., et al.: Correlated pseudorandomness from expand-accumulate codes. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 603–633. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_21

    Chapter  Google Scholar 

  12. Boyle, E., et al.: Efficient two-round OT extension and silent non-interactive secure computation. In: Cavallaro, L., Kinder, J., Wang, X., Katz, J. (eds.) ACM CCS 2019, pp. 291–308. ACM Press (2019)

    Google Scholar 

  13. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators: silent OT extension and more. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 489–518. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26954-8_16

    Chapter  Google Scholar 

  14. Boyle, E., Couteau, G., Gilboa, N., Ishai, Y., Kohl, L., Scholl, P.: Efficient pseudorandom correlation generators from ring-LPN. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020, Part II. LNCS, vol. 12171, pp. 387–416. Springer, Heidelberg (Aug (2020)

    Chapter  Google Scholar 

  15. Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs (2009). https://eprint.iacr.org/2009/050

  16. Couteau, G., Rindal, P., Raghuraman, S.: Silver: silent VOLE and oblivious transfer from hardness of decoding structured LDPC codes. In: Malkin, T., Peikert, C. (eds.) CRYPTO 2021. LNCS, vol. 12827, pp. 502–534. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-84252-9_17

    Chapter  Google Scholar 

  17. Cramer, R., Damgard, I., Xing, C., Yuan, C.: Amortized complexity of zero-knowledge proofs revisited: achieving linear soundness slack (2016). https://eprint.iacr.org/2016/681

  18. Debris-Alazard, T., Sendrier, N., Tillich, J.-P.: Wave: a new family of trapdoor one-way preimage sampleable functions based on codes. In: Galbraith, S.D., Moriai, S. (eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 21–51. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34578-5_2

    Chapter  Google Scholar 

  19. Escudero, D., Ghosh, S., Keller, M., Rachuri, R., Scholl, P.: Improved primitives for MPC over mixed arithmetic-binary circuits. In: Micciancio, D., Ristenpart, T. (eds.) CRYPTO 2020. LNCS, vol. 12171, pp. 823–852. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-56880-1_29

    Chapter  Google Scholar 

  20. Feneuil, T., Joux, A., Rivain, M.: Shared permutation for syndrome decoding: New zero-knowledge protocol and code-based signature. Cryptology ePrint Archive, Report 2021/1576 (2021). https://eprint.iacr.org/2021/1576

  21. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: Shorter signatures from zero-knowledge proofs. In: Dodis, Y., Shrimpton, T. (eds.) CRYPTO 2022. LNCS, vol. 13508, pp. 541–572. Springer, Heidelberg (2022). https://doi.org/10.1007/978-3-031-15979-4_19

    Chapter  Google Scholar 

  22. Feneuil, T., Joux, A., Rivain, M.: Syndrome decoding in the head: shorter signatures from zero-knowledge proofs. Cryptology ePrint Archive (2022)

    Google Scholar 

  23. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7_12

    Chapter  Google Scholar 

  24. Finiasz, M., Gaborit, P., Sendrier, N.: Improved fast syndrome based cryptographic hash functions. In: Proceedings of ECRYPT Hash Workshop, vol. 2007, p. 155. Citeseer (2007)

    Google Scholar 

  25. Gueron, S., Persichetti, E., Santini, P.: Designing a practical code-based signature scheme from zero-knowledge proofs with trusted setup. Cryptology ePrint Archive, Report 2021/1020 (2021). https://eprint.iacr.org/2021/1020

  26. Hazay, C., Orsini, E., Scholl, P., Soria-Vazquez, E.: TinyKeys: a new approach to efficient multi-party computation. In: Shacham, H., Boldyreva, A. (eds.) CRYPTO 2018. LNCS, vol. 10993, pp. 3–33. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96878-0_1

    Chapter  Google Scholar 

  27. Ishai, Y., Kushilevitz, E., Ostrovsky, R., Sahai, A.: Zero-knowledge from secure multiparty computation. In: Johnson, D.S., Feige, U. (eds.) 39th ACM STOC, pp. 21–30. ACM Press (2007)

    Google Scholar 

  28. Kales, D., Zaverucha, G.: An attack on some signature schemes constructed from five-pass identification schemes. In: Krenn, S., Shulman, H., Vaudenay, S. (eds.) CANS 2020. LNCS, vol. 12579, pp. 3–22. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65411-5_1

    Chapter  Google Scholar 

  29. Katz, J., Kolesnikov, V., Wang, X.: Improved non-interactive zero knowledge with applications to post-quantum signatures. In: Lie, D., Mannan, M., Backes, M., Wang, X. (eds.) ACM CCS 2018, pp. 525–537. ACM Press (2018)

    Google Scholar 

  30. Meziani, M., Dagdelen, Ö., Cayrel, P.-L., El Yousfi Alaoui, S.M.: S-FSB: an improved variant of the FSB hash family. In: Kim, T., Adeli, H., Robles, R.J., Balitanas, M. (eds.) ISA 2011. CCIS, vol. 200, pp. 132–145. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23141-4_13

    Chapter  Google Scholar 

  31. Münch, J.P., Schneider, T., Yalame, H.: VASA: vector AES instructions for security applications. Cryptology ePrint Archive, Report 2021/1493 (2021). https://eprint.iacr.org/2021/1493

  32. Rindal, P., Schoppmann, P.: VOLE-PSI: fast OPRF and circuit-PSI from vector-OLE. In: Canteaut, A., Standaert, F.-X. (eds.) EUROCRYPT 2021. LNCS, vol. 12697, pp. 901–930. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77886-6_31

    Chapter  Google Scholar 

  33. Rotaru, D., Wood, T.: MArBled circuits: mixing arithmetic and boolean circuits with active security. Cryptology ePrint Archive, Report 2019/207 (2019). https://eprint.iacr.org/2019/207

  34. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: 35th FOCS, pp. 124–134. IEEE Computer Society Press (1994)

    Google Scholar 

  35. Stern, J.: Designing identification schemes with keys of short size. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 164–173. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5_18

    Chapter  Google Scholar 

  36. Weng, C., Yang, K., Katz, J., Wang, X.: Wolverine: fast, scalable, and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits, pp. 1074–1091. IEEE Computer Society Press (2021)

    Google Scholar 

  37. Yang, K., Weng, C., Lan, X., Zhang, J., Wang, X.: Ferret: fast extension for correlated OT with small communication. In: Ligatti, J., Ou, X., Katz, J., Vigna, G. (eds.) ACM CCS 20, pp. 1607–1626. ACM Press (2020)

    Google Scholar 

Download references

Acknowledgement

This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 945332.

The first and second author acknowledge the support of the French Agence Nationale de la Recherche (ANR), under grant ANR-20-CE39-0001 (project SCENE). This work was also supported by the France 2030 ANR Project ANR-22-PECY-003 SecureCompute.

The third Author of this work has been supported by the European Union’s H2020 Programme under grant agreement number ERC-669891.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffroy Couteau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Carozza, E., Couteau, G., Joux, A. (2023). Short Signatures from Regular Syndrome Decoding in the Head. In: Hazay, C., Stam, M. (eds) Advances in Cryptology – EUROCRYPT 2023. EUROCRYPT 2023. Lecture Notes in Computer Science, vol 14008. Springer, Cham. https://doi.org/10.1007/978-3-031-30589-4_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30589-4_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30588-7

  • Online ISBN: 978-3-031-30589-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics