Skip to main content

Design and Implementation on FPGA of a HW Accelerator for Post-Quantum RLWE Polynomial Operations

  • Conference paper
  • First Online:
Applications in Electronics Pervading Industry, Environment and Society (ApplePies 2022)

Abstract

Ring learning with errors (RLWE) is largely adopted in Post-Quantum cryptography and Homomorphic encryption schemes. RLWE cryptosystems are defined over polynomial quotient rings, where polynomial additions/subtractions and multiplication are required. In this paper we propose the implementation of a hardware accelerator for polynomial operations required in RLWE cryptosystems. Such hardware accelerator includes a Arithmetic Logic Unit (ALU) able to perform polynomial additions/subtractions and multiplications. The latter adopts Negative Wrapped Convolution (NWC) and Number Theoretic Transform (NTT) techniques. The hardware accelerator has been integrated in a hardware system for accelerating the NewHope-1024 algorithm, and a demo on a Intel DE4 FPGA board has been developed to test the functionality of the system. Synthesis results on different FPGA technologies are proposed too, showing competitive performances respect to the State of Art.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  2. Diffie, W., Hellman, M.: New directions in cryptography. IEEE Trans. Inf. Theory 22(6), 644–654 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Koblitz, N.: Mathematics of computation. Elliptic Curve Cryptosys. 48n 1(77) (1987)

    Google Scholar 

  4. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134, IEEE (1994)

    Google Scholar 

  5. Gentry, C.: Fully homomorphic encryption using ideal lattices. In: Proceedings of the Forty-first Annual Acm Symposium on Theory of Computing, pp. 169–178 (2009)

    Google Scholar 

  6. Naehrig, M., Lauter, K., Vaikuntanathan, V.: Can homomorphic encryption be practical?. In: Proceedings of the 3rd ACM Workshop on Cloud Computing Security Workshop, pp. 113–124 (2011)

    Google Scholar 

  7. Regev, O.: New lattice-based cryptographic constructions. J. ACM (JACM) 51(6), 899–942 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13190-5_1

    Chapter  Google Scholar 

  9. Nejatollahi, H., Shahhosseini, S., Cammarota, R., Dutt, N.: Exploring energy efficient quantum-resistant signal processing using array processors. In: ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1539–1543. IEEE (2020)

    Google Scholar 

  10. de la Piedra, A.: Erdem alkim, roberto avanzi, joppe bos, léo ducas, antonio de la piedra, thomas pöppelmann, peter schwabe, douglas stebila version 1.0-(updated june 14, 2018) (2018)

    Google Scholar 

  11. Pöppelmann, T., Güneysu, T.: Towards efficient arithmetic for lattice-based cryptography on reconfigurable hardware. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol. 7533, pp. 139–158. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33481-8_8

    Chapter  Google Scholar 

  12. Longa, P., Naehrig, M.: Speeding up the number theoretic transform for faster ideal lattice-based cryptography. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 124–139. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48965-0_8

    Chapter  Google Scholar 

  13. Di Matteo, S., Baldanzi, L., Crocetti, L., Nannipieri, P., Fanucci, L., Saponara, S.: Secure elliptic curve crypto-processor for real-time iot applications. Energies 14(15), 4676 (2021)

    Article  Google Scholar 

  14. Nannipieri, P., Di Matteo, S., Zulberti, L., Albicocchi, F., Saponara, S., Fanucci, L.: A risc-v post quantum cryptography instruction set extension for number theoretic transform to speed-up crystals algorithms. IEEE Access 9, 150798–150808 (2021)

    Article  Google Scholar 

  15. Banerjee, U., Ukyab, T.S., Chandrakasan, A.P.: Sapphire: A configurable crypto-processor for post-quantum lattice-based protocols, arXiv:1910.07557 (2019)

  16. Nannipieri, P., et al.: Sha2 and sha-3 accelerator design in a 7 nm technology within the european processor initiative. Microprocess. Microsyst. 87, 103444 (2021)

    Article  Google Scholar 

  17. Zhang, N., Yang, B., Chen, C., Yin, S., Wei, S., Liu, L.: Highly efficient architecture of newhope-nist on fpga using low-complexity ntt/intt. IACR Trans. Cryptograph. Hardware Embedded Syst., 49–72 (2020)

    Google Scholar 

  18. Rentería-Mejía, C.P., Velasco-Medina, J.: High-throughput ring-lwe cryptoprocessors. IEEE Trans. Very Large Scale Integrat. (VLSI) Syst. 25(8), 2332–2345 (2017)

    Google Scholar 

  19. Kuo, P.-C.: High performance post-quantum key exchange on fpgas. Cryptology ePrint Archive (2017)

    Google Scholar 

  20. Bisheh-Niasar, M., Azarderakhsh, R., Mozaffari-Kermani, M.: High-speed ntt-based polynomial multiplication accelerator for post-quantum cryptography. In: 2021 IEEE 28th Symposium on Computer Arithmetic (ARITH), pp. 94–101 (2021)

    Google Scholar 

Download references

Acknowledgments

This work has been supported by an Intel Research Grant and by MIUR Dipartimento di Eccellenza program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Di Matteo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Di Matteo, S., Saponara, S., Locatelli, R. (2023). Design and Implementation on FPGA of a HW Accelerator for Post-Quantum RLWE Polynomial Operations. In: Berta, R., De Gloria, A. (eds) Applications in Electronics Pervading Industry, Environment and Society. ApplePies 2022. Lecture Notes in Electrical Engineering, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-031-30333-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-30333-3_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-30332-6

  • Online ISBN: 978-3-031-30333-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics